Metamath Proof Explorer


Theorem lnopmul

Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopmul T LinOp A B T A B = A T B

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 lnopl T LinOp A B 0 T A B + 0 = A T B + T 0
3 1 2 mpanr2 T LinOp A B T A B + 0 = A T B + T 0
4 3 3impa T LinOp A B T A B + 0 = A T B + T 0
5 hvmulcl A B A B
6 ax-hvaddid A B A B + 0 = A B
7 5 6 syl A B A B + 0 = A B
8 7 3adant1 T LinOp A B A B + 0 = A B
9 8 fveq2d T LinOp A B T A B + 0 = T A B
10 lnop0 T LinOp T 0 = 0
11 10 oveq2d T LinOp A T B + T 0 = A T B + 0
12 11 3ad2ant1 T LinOp A B A T B + T 0 = A T B + 0
13 lnopf T LinOp T :
14 13 ffvelrnda T LinOp B T B
15 hvmulcl A T B A T B
16 14 15 sylan2 A T LinOp B A T B
17 16 3impb A T LinOp B A T B
18 17 3com12 T LinOp A B A T B
19 ax-hvaddid A T B A T B + 0 = A T B
20 18 19 syl T LinOp A B A T B + 0 = A T B
21 12 20 eqtrd T LinOp A B A T B + T 0 = A T B
22 4 9 21 3eqtr3d T LinOp A B T A B = A T B