Metamath Proof Explorer


Theorem lnopmulsubi

Description: Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 T LinOp
Assertion lnopmulsubi A B C T A B - C = A T B - T C

Proof

Step Hyp Ref Expression
1 lnopl.1 T LinOp
2 hvmulcl A B A B
3 1 lnopsubi A B C T A B - C = T A B - T C
4 2 3 stoic3 A B C T A B - C = T A B - T C
5 1 lnopmuli A B T A B = A T B
6 5 3adant3 A B C T A B = A T B
7 6 oveq1d A B C T A B - T C = A T B - T C
8 4 7 eqtrd A B C T A B - C = A T B - T C