| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishpg.p |
|
| 2 |
|
ishpg.i |
|
| 3 |
|
ishpg.l |
|
| 4 |
|
ishpg.o |
|
| 5 |
|
ishpg.g |
|
| 6 |
|
ishpg.d |
|
| 7 |
|
hpgbr.a |
|
| 8 |
|
hpgbr.b |
|
| 9 |
|
lnopp2hpgb.c |
|
| 10 |
|
lnopp2hpgb.1 |
|
| 11 |
9
|
adantr |
|
| 12 |
10
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
|
breq2 |
|
| 15 |
|
breq2 |
|
| 16 |
14 15
|
anbi12d |
|
| 17 |
16
|
rspcev |
|
| 18 |
11 12 13 17
|
syl12anc |
|
| 19 |
1 2 3 4 5 6 7 8
|
hpgbr |
|
| 20 |
19
|
adantr |
|
| 21 |
18 20
|
mpbird |
|
| 22 |
|
eqid |
|
| 23 |
6
|
ad7antr |
|
| 24 |
23
|
ad3antrrr |
|
| 25 |
5
|
ad7antr |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
|
eqid |
|
| 28 |
7
|
ad3antrrr |
|
| 29 |
28
|
ad4antr |
|
| 30 |
29
|
ad3antrrr |
|
| 31 |
8
|
ad3antrrr |
|
| 32 |
31
|
ad4antr |
|
| 33 |
32
|
ad3antrrr |
|
| 34 |
9
|
ad10antr |
|
| 35 |
10
|
ad10antr |
|
| 36 |
|
simpr |
|
| 37 |
|
simplr |
|
| 38 |
1 3 2 25 23 37
|
tglnpt |
|
| 39 |
38
|
ad3antrrr |
|
| 40 |
|
simp-5r |
|
| 41 |
1 22 2 4 3 24 26 30 34 35
|
oppne1 |
|
| 42 |
|
nelne2 |
|
| 43 |
40 41 42
|
syl2anc |
|
| 44 |
1 2 3 26 39 30 43
|
tgelrnln |
|
| 45 |
1 2 3 26 39 30 43
|
tglinerflx2 |
|
| 46 |
|
nelne1 |
|
| 47 |
45 41 46
|
syl2anc |
|
| 48 |
47
|
necomd |
|
| 49 |
|
simpllr |
|
| 50 |
|
simplrr |
|
| 51 |
1 2 3 26 39 30 49 43 50
|
btwnlng1 |
|
| 52 |
36 51
|
elind |
|
| 53 |
1 2 3 26 39 30 43
|
tglinerflx1 |
|
| 54 |
40 53
|
elind |
|
| 55 |
1 2 3 26 24 44 48 52 54
|
tglineineq |
|
| 56 |
55 43
|
eqnetrd |
|
| 57 |
56
|
necomd |
|
| 58 |
|
simp-4r |
|
| 59 |
1 3 2 25 23 58
|
tglnpt |
|
| 60 |
59
|
ad3antrrr |
|
| 61 |
|
simp-7r |
|
| 62 |
|
simplr |
|
| 63 |
62
|
ad4antr |
|
| 64 |
63
|
ad3antrrr |
|
| 65 |
|
simprr |
|
| 66 |
65
|
ad7antr |
|
| 67 |
1 22 2 4 3 24 26 33 64 66
|
oppne1 |
|
| 68 |
|
nelne2 |
|
| 69 |
61 67 68
|
syl2anc |
|
| 70 |
1 2 3 26 60 33 69
|
tgelrnln |
|
| 71 |
1 2 3 26 60 33 69
|
tglinerflx2 |
|
| 72 |
|
nelne1 |
|
| 73 |
71 67 72
|
syl2anc |
|
| 74 |
73
|
necomd |
|
| 75 |
|
simplrl |
|
| 76 |
1 2 3 26 60 33 49 69 75
|
btwnlng1 |
|
| 77 |
36 76
|
elind |
|
| 78 |
1 2 3 26 60 33 69
|
tglinerflx1 |
|
| 79 |
61 78
|
elind |
|
| 80 |
1 2 3 26 24 70 74 77 79
|
tglineineq |
|
| 81 |
80 69
|
eqnetrd |
|
| 82 |
81
|
necomd |
|
| 83 |
|
simprl |
|
| 84 |
83
|
ad7antr |
|
| 85 |
1 22 2 4 3 24 26 30 64 84
|
oppne2 |
|
| 86 |
|
nelne2 |
|
| 87 |
36 85 86
|
syl2anc |
|
| 88 |
87
|
necomd |
|
| 89 |
|
simpllr |
|
| 90 |
89
|
ad3antrrr |
|
| 91 |
1 22 2 26 30 60 64 90
|
tgbtwncom |
|
| 92 |
80 91
|
eqeltrd |
|
| 93 |
|
simp-4r |
|
| 94 |
1 22 2 26 33 39 64 93
|
tgbtwncom |
|
| 95 |
55 94
|
eqeltrd |
|
| 96 |
1 2 26 64 49 30 33 88 92 95
|
tgbtwnconn2 |
|
| 97 |
1 2 27 30 33 49 26
|
ishlg |
|
| 98 |
57 82 96 97
|
mpbir3and |
|
| 99 |
1 22 2 4 3 24 26 27 30 33 34 35 36 98
|
opphl |
|
| 100 |
23
|
ad3antrrr |
|
| 101 |
25
|
ad3antrrr |
|
| 102 |
|
simpllr |
|
| 103 |
32
|
ad3antrrr |
|
| 104 |
9
|
ad10antr |
|
| 105 |
29
|
ad3antrrr |
|
| 106 |
10
|
ad10antr |
|
| 107 |
|
simp-5r |
|
| 108 |
38
|
ad3antrrr |
|
| 109 |
|
simplrr |
|
| 110 |
|
simpr |
|
| 111 |
|
nelne2 |
|
| 112 |
107 110 111
|
syl2anc |
|
| 113 |
112
|
necomd |
|
| 114 |
1 22 2 101 108 102 105 109 113
|
tgbtwnne |
|
| 115 |
1 2 27 108 105 102 101 105 109 114 113
|
btwnhl1 |
|
| 116 |
1 2 27 102 105 108 101 115
|
hlcomd |
|
| 117 |
1 22 2 4 3 100 101 27 105 102 104 106 107 116
|
opphl |
|
| 118 |
58
|
ad3antrrr |
|
| 119 |
59
|
ad3antrrr |
|
| 120 |
|
simplrl |
|
| 121 |
|
nelne2 |
|
| 122 |
118 110 121
|
syl2anc |
|
| 123 |
122
|
necomd |
|
| 124 |
1 22 2 101 119 102 103 120 123
|
tgbtwnne |
|
| 125 |
1 2 27 119 103 102 101 105 120 124 123
|
btwnhl1 |
|
| 126 |
1 22 2 4 3 100 101 27 102 103 104 117 118 125
|
opphl |
|
| 127 |
99 126
|
pm2.61dan |
|
| 128 |
|
simpr |
|
| 129 |
1 22 2 25 29 32 63 59 38 89 128
|
axtgpasch |
|
| 130 |
127 129
|
r19.29a |
|
| 131 |
1 22 2 4 31 62
|
islnopp |
|
| 132 |
65 131
|
mpbid |
|
| 133 |
132
|
simprd |
|
| 134 |
|
eleq1w |
|
| 135 |
134
|
cbvrexvw |
|
| 136 |
133 135
|
sylib |
|
| 137 |
136
|
ad2antrr |
|
| 138 |
130 137
|
r19.29a |
|
| 139 |
1 22 2 4 28 62
|
islnopp |
|
| 140 |
83 139
|
mpbid |
|
| 141 |
140
|
simprd |
|
| 142 |
|
eleq1w |
|
| 143 |
142
|
cbvrexvw |
|
| 144 |
141 143
|
sylib |
|
| 145 |
138 144
|
r19.29a |
|
| 146 |
19
|
biimpa |
|
| 147 |
145 146
|
r19.29a |
|
| 148 |
21 147
|
impbida |
|