Metamath Proof Explorer


Theorem lnoppnhpg

Description: If two points lie on the opposite side of a line D , they are not on the same half-plane. Theorem 9.9 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p P = Base G
ishpg.i I = Itv G
ishpg.l L = Line 𝒢 G
ishpg.o O = a b | a P D b P D t D t a I b
ishpg.g φ G 𝒢 Tarski
ishpg.d φ D ran L
hpgbr.a φ A P
hpgbr.b φ B P
lnoppnhpg.1 φ A O B
Assertion lnoppnhpg φ ¬ A hp 𝒢 G D B

Proof

Step Hyp Ref Expression
1 ishpg.p P = Base G
2 ishpg.i I = Itv G
3 ishpg.l L = Line 𝒢 G
4 ishpg.o O = a b | a P D b P D t D t a I b
5 ishpg.g φ G 𝒢 Tarski
6 ishpg.d φ D ran L
7 hpgbr.a φ A P
8 hpgbr.b φ B P
9 lnoppnhpg.1 φ A O B
10 eqid dist G = dist G
11 1 10 2 4 3 6 5 8 oppnid φ ¬ B O B
12 1 2 3 4 5 6 7 8 8 9 lnopp2hpgb φ B O B A hp 𝒢 G D B
13 11 12 mtbid φ ¬ A hp 𝒢 G D B