Metamath Proof Explorer


Theorem lnopsubi

Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 T LinOp
Assertion lnopsubi A B T A - B = T A - T B

Proof

Step Hyp Ref Expression
1 lnopl.1 T LinOp
2 neg1cn 1
3 1 lnopaddmuli 1 A B T A + -1 B = T A + -1 T B
4 2 3 mp3an1 A B T A + -1 B = T A + -1 T B
5 hvsubval A B A - B = A + -1 B
6 5 fveq2d A B T A - B = T A + -1 B
7 1 lnopfi T :
8 7 ffvelrni A T A
9 7 ffvelrni B T B
10 hvsubval T A T B T A - T B = T A + -1 T B
11 8 9 10 syl2an A B T A - T B = T A + -1 T B
12 4 6 11 3eqtr4d A B T A - B = T A - T B