Metamath Proof Explorer


Theorem lnopsubmuli

Description: Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 T LinOp
Assertion lnopsubmuli A B C T B - A C = T B - A T C

Proof

Step Hyp Ref Expression
1 lnopl.1 T LinOp
2 hvmulcl A C A C
3 1 lnopsubi B A C T B - A C = T B - T A C
4 2 3 sylan2 B A C T B - A C = T B - T A C
5 4 3impb B A C T B - A C = T B - T A C
6 5 3com12 A B C T B - A C = T B - T A C
7 1 lnopmuli A C T A C = A T C
8 7 oveq2d A C T B - T A C = T B - A T C
9 8 3adant2 A B C T B - T A C = T B - A T C
10 6 9 eqtrd A B C T B - A C = T B - A T C