Metamath Proof Explorer


Theorem lnopunii

Description: If a linear operator (whose range is ~H ) is idempotent in the norm, the operator is unitary. Similar to theorem in AkhiezerGlazman p. 73. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopuni.1 T LinOp
lnopuni.2 T : onto
lnopuni.3 x norm T x = norm x
Assertion lnopunii T UniOp

Proof

Step Hyp Ref Expression
1 lnopuni.1 T LinOp
2 lnopuni.2 T : onto
3 lnopuni.3 x norm T x = norm x
4 fveq2 x = if x x 0 T x = T if x x 0
5 4 oveq1d x = if x x 0 T x ih T y = T if x x 0 ih T y
6 oveq1 x = if x x 0 x ih y = if x x 0 ih y
7 5 6 eqeq12d x = if x x 0 T x ih T y = x ih y T if x x 0 ih T y = if x x 0 ih y
8 fveq2 y = if y y 0 T y = T if y y 0
9 8 oveq2d y = if y y 0 T if x x 0 ih T y = T if x x 0 ih T if y y 0
10 oveq2 y = if y y 0 if x x 0 ih y = if x x 0 ih if y y 0
11 9 10 eqeq12d y = if y y 0 T if x x 0 ih T y = if x x 0 ih y T if x x 0 ih T if y y 0 = if x x 0 ih if y y 0
12 ifhvhv0 if x x 0
13 ifhvhv0 if y y 0
14 1 3 12 13 lnopunilem2 T if x x 0 ih T if y y 0 = if x x 0 ih if y y 0
15 7 11 14 dedth2h x y T x ih T y = x ih y
16 15 rgen2 x y T x ih T y = x ih y
17 elunop T UniOp T : onto x y T x ih T y = x ih y
18 2 16 17 mpbir2an T UniOp