Metamath Proof Explorer


Theorem lnopunilem1

Description: Lemma for lnopunii . (Contributed by NM, 14-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses lnopunilem.1 T LinOp
lnopunilem.2 x norm T x = norm x
lnopunilem.3 A
lnopunilem.4 B
lnopunilem1.5 C
Assertion lnopunilem1 C T A ih T B = C A ih B

Proof

Step Hyp Ref Expression
1 lnopunilem.1 T LinOp
2 lnopunilem.2 x norm T x = norm x
3 lnopunilem.3 A
4 lnopunilem.4 B
5 lnopunilem1.5 C
6 1 lnopfi T :
7 6 ffvelrni A T A
8 3 7 ax-mp T A
9 6 ffvelrni B T B
10 4 9 ax-mp T B
11 8 10 hicli T A ih T B
12 5 11 mulcli C T A ih T B
13 reval C T A ih T B C T A ih T B = C T A ih T B + C T A ih T B 2
14 12 13 ax-mp C T A ih T B = C T A ih T B + C T A ih T B 2
15 3 4 hicli A ih B
16 5 15 mulcli C A ih B
17 reval C A ih B C A ih B = C A ih B + C A ih B 2
18 16 17 ax-mp C A ih B = C A ih B + C A ih B 2
19 2fveq3 x = y norm T x = norm T y
20 fveq2 x = y norm x = norm y
21 19 20 eqeq12d x = y norm T x = norm x norm T y = norm y
22 21 cbvralvw x norm T x = norm x y norm T y = norm y
23 2 22 mpbi y norm T y = norm y
24 oveq1 norm T y = norm y norm T y 2 = norm y 2
25 6 ffvelrni y T y
26 normsq T y norm T y 2 = T y ih T y
27 25 26 syl y norm T y 2 = T y ih T y
28 normsq y norm y 2 = y ih y
29 27 28 eqeq12d y norm T y 2 = norm y 2 T y ih T y = y ih y
30 24 29 syl5ib y norm T y = norm y T y ih T y = y ih y
31 30 ralimia y norm T y = norm y y T y ih T y = y ih y
32 23 31 ax-mp y T y ih T y = y ih y
33 fveq2 y = A T y = T A
34 33 33 oveq12d y = A T y ih T y = T A ih T A
35 id y = A y = A
36 35 35 oveq12d y = A y ih y = A ih A
37 34 36 eqeq12d y = A T y ih T y = y ih y T A ih T A = A ih A
38 37 rspcv A y T y ih T y = y ih y T A ih T A = A ih A
39 3 32 38 mp2 T A ih T A = A ih A
40 39 oveq2i C T A ih T A = C A ih A
41 40 oveq2i C C T A ih T A = C C A ih A
42 fveq2 y = B T y = T B
43 42 42 oveq12d y = B T y ih T y = T B ih T B
44 id y = B y = B
45 44 44 oveq12d y = B y ih y = B ih B
46 43 45 eqeq12d y = B T y ih T y = y ih y T B ih T B = B ih B
47 46 rspcv B y T y ih T y = y ih y T B ih T B = B ih B
48 4 32 47 mp2 T B ih T B = B ih B
49 41 48 oveq12i C C T A ih T A + T B ih T B = C C A ih A + B ih B
50 49 oveq1i C C T A ih T A + T B ih T B + C T A ih T B + C T A ih T B = C C A ih A + B ih B + C T A ih T B + C T A ih T B
51 5 cjcli C
52 8 8 hicli T A ih T A
53 51 52 mulcli C T A ih T A
54 5 53 mulcli C C T A ih T A
55 10 10 hicli T B ih T B
56 12 cjcli C T A ih T B
57 54 55 12 56 add42i C C T A ih T A + T B ih T B + C T A ih T B + C T A ih T B = C C T A ih T A + C T A ih T B + C T A ih T B + T B ih T B
58 3 3 hicli A ih A
59 51 58 mulcli C A ih A
60 5 59 mulcli C C A ih A
61 4 4 hicli B ih B
62 16 cjcli C A ih B
63 60 61 16 62 add42i C C A ih A + B ih B + C A ih B + C A ih B = C C A ih A + C A ih B + C A ih B + B ih B
64 5 3 hvmulcli C A
65 64 4 hvaddcli C A + B
66 fveq2 y = C A + B T y = T C A + B
67 66 66 oveq12d y = C A + B T y ih T y = T C A + B ih T C A + B
68 id y = C A + B y = C A + B
69 68 68 oveq12d y = C A + B y ih y = C A + B ih C A + B
70 67 69 eqeq12d y = C A + B T y ih T y = y ih y T C A + B ih T C A + B = C A + B ih C A + B
71 70 rspcv C A + B y T y ih T y = y ih y T C A + B ih T C A + B = C A + B ih C A + B
72 65 32 71 mp2 T C A + B ih T C A + B = C A + B ih C A + B
73 ax-his2 C A B C A + B C A + B ih C A + B = C A ih C A + B + B ih C A + B
74 64 4 65 73 mp3an C A + B ih C A + B = C A ih C A + B + B ih C A + B
75 ax-his3 C A C A + B C A ih C A + B = C A ih C A + B
76 5 3 65 75 mp3an C A ih C A + B = C A ih C A + B
77 his7 A C A B A ih C A + B = A ih C A + A ih B
78 3 64 4 77 mp3an A ih C A + B = A ih C A + A ih B
79 his5 C A A A ih C A = C A ih A
80 5 3 3 79 mp3an A ih C A = C A ih A
81 80 oveq1i A ih C A + A ih B = C A ih A + A ih B
82 78 81 eqtri A ih C A + B = C A ih A + A ih B
83 82 oveq2i C A ih C A + B = C C A ih A + A ih B
84 5 59 15 adddii C C A ih A + A ih B = C C A ih A + C A ih B
85 76 83 84 3eqtri C A ih C A + B = C C A ih A + C A ih B
86 his7 B C A B B ih C A + B = B ih C A + B ih B
87 4 64 4 86 mp3an B ih C A + B = B ih C A + B ih B
88 his5 C B A B ih C A = C B ih A
89 5 4 3 88 mp3an B ih C A = C B ih A
90 5 15 cjmuli C A ih B = C A ih B
91 4 3 his1i B ih A = A ih B
92 91 oveq2i C B ih A = C A ih B
93 90 92 eqtr4i C A ih B = C B ih A
94 89 93 eqtr4i B ih C A = C A ih B
95 94 oveq1i B ih C A + B ih B = C A ih B + B ih B
96 87 95 eqtri B ih C A + B = C A ih B + B ih B
97 85 96 oveq12i C A ih C A + B + B ih C A + B = C C A ih A + C A ih B + C A ih B + B ih B
98 72 74 97 3eqtrri C C A ih A + C A ih B + C A ih B + B ih B = T C A + B ih T C A + B
99 1 lnopli C A B T C A + B = C T A + T B
100 5 3 4 99 mp3an T C A + B = C T A + T B
101 100 100 oveq12i T C A + B ih T C A + B = C T A + T B ih C T A + T B
102 5 8 hvmulcli C T A
103 102 10 hvaddcli C T A + T B
104 ax-his2 C T A T B C T A + T B C T A + T B ih C T A + T B = C T A ih C T A + T B + T B ih C T A + T B
105 102 10 103 104 mp3an C T A + T B ih C T A + T B = C T A ih C T A + T B + T B ih C T A + T B
106 101 105 eqtri T C A + B ih T C A + B = C T A ih C T A + T B + T B ih C T A + T B
107 ax-his3 C T A C T A + T B C T A ih C T A + T B = C T A ih C T A + T B
108 5 8 103 107 mp3an C T A ih C T A + T B = C T A ih C T A + T B
109 his7 T A C T A T B T A ih C T A + T B = T A ih C T A + T A ih T B
110 8 102 10 109 mp3an T A ih C T A + T B = T A ih C T A + T A ih T B
111 his5 C T A T A T A ih C T A = C T A ih T A
112 5 8 8 111 mp3an T A ih C T A = C T A ih T A
113 112 oveq1i T A ih C T A + T A ih T B = C T A ih T A + T A ih T B
114 110 113 eqtri T A ih C T A + T B = C T A ih T A + T A ih T B
115 114 oveq2i C T A ih C T A + T B = C C T A ih T A + T A ih T B
116 5 53 11 adddii C C T A ih T A + T A ih T B = C C T A ih T A + C T A ih T B
117 108 115 116 3eqtri C T A ih C T A + T B = C C T A ih T A + C T A ih T B
118 his7 T B C T A T B T B ih C T A + T B = T B ih C T A + T B ih T B
119 10 102 10 118 mp3an T B ih C T A + T B = T B ih C T A + T B ih T B
120 his5 C T B T A T B ih C T A = C T B ih T A
121 5 10 8 120 mp3an T B ih C T A = C T B ih T A
122 5 11 cjmuli C T A ih T B = C T A ih T B
123 10 8 his1i T B ih T A = T A ih T B
124 123 oveq2i C T B ih T A = C T A ih T B
125 122 124 eqtr4i C T A ih T B = C T B ih T A
126 121 125 eqtr4i T B ih C T A = C T A ih T B
127 126 oveq1i T B ih C T A + T B ih T B = C T A ih T B + T B ih T B
128 119 127 eqtri T B ih C T A + T B = C T A ih T B + T B ih T B
129 117 128 oveq12i C T A ih C T A + T B + T B ih C T A + T B = C C T A ih T A + C T A ih T B + C T A ih T B + T B ih T B
130 98 106 129 3eqtrri C C T A ih T A + C T A ih T B + C T A ih T B + T B ih T B = C C A ih A + C A ih B + C A ih B + B ih B
131 63 130 eqtr4i C C A ih A + B ih B + C A ih B + C A ih B = C C T A ih T A + C T A ih T B + C T A ih T B + T B ih T B
132 57 131 eqtr4i C C T A ih T A + T B ih T B + C T A ih T B + C T A ih T B = C C A ih A + B ih B + C A ih B + C A ih B
133 50 132 eqtr3i C C A ih A + B ih B + C T A ih T B + C T A ih T B = C C A ih A + B ih B + C A ih B + C A ih B
134 60 61 addcli C C A ih A + B ih B
135 12 56 addcli C T A ih T B + C T A ih T B
136 16 62 addcli C A ih B + C A ih B
137 134 135 136 addcani C C A ih A + B ih B + C T A ih T B + C T A ih T B = C C A ih A + B ih B + C A ih B + C A ih B C T A ih T B + C T A ih T B = C A ih B + C A ih B
138 133 137 mpbi C T A ih T B + C T A ih T B = C A ih B + C A ih B
139 138 oveq1i C T A ih T B + C T A ih T B 2 = C A ih B + C A ih B 2
140 18 139 eqtr4i C A ih B = C T A ih T B + C T A ih T B 2
141 14 140 eqtr4i C T A ih T B = C A ih B