Metamath Proof Explorer


Theorem lnopunilem2

Description: Lemma for lnopunii . (Contributed by NM, 12-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses lnopunilem.1 T LinOp
lnopunilem.2 x norm T x = norm x
lnopunilem.3 A
lnopunilem.4 B
Assertion lnopunilem2 T A ih T B = A ih B

Proof

Step Hyp Ref Expression
1 lnopunilem.1 T LinOp
2 lnopunilem.2 x norm T x = norm x
3 lnopunilem.3 A
4 lnopunilem.4 B
5 fvoveq1 y = if y y 0 y T A ih T B = if y y 0 T A ih T B
6 fvoveq1 y = if y y 0 y A ih B = if y y 0 A ih B
7 5 6 eqeq12d y = if y y 0 y T A ih T B = y A ih B if y y 0 T A ih T B = if y y 0 A ih B
8 0cn 0
9 8 elimel if y y 0
10 1 2 3 4 9 lnopunilem1 if y y 0 T A ih T B = if y y 0 A ih B
11 7 10 dedth y y T A ih T B = y A ih B
12 11 rgen y y T A ih T B = y A ih B
13 1 lnopfi T :
14 13 ffvelrni A T A
15 3 14 ax-mp T A
16 13 ffvelrni B T B
17 4 16 ax-mp T B
18 15 17 hicli T A ih T B
19 3 4 hicli A ih B
20 recan T A ih T B A ih B y y T A ih T B = y A ih B T A ih T B = A ih B
21 18 19 20 mp2an y y T A ih T B = y A ih B T A ih T B = A ih B
22 12 21 mpbi T A ih T B = A ih B