Metamath Proof Explorer


Theorem lnosub

Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnosub.1 X = BaseSet U
lnosub.5 M = - v U
lnosub.6 N = - v W
lnosub.7 L = U LnOp W
Assertion lnosub U NrmCVec W NrmCVec T L A X B X T A M B = T A N T B

Proof

Step Hyp Ref Expression
1 lnosub.1 X = BaseSet U
2 lnosub.5 M = - v U
3 lnosub.6 N = - v W
4 lnosub.7 L = U LnOp W
5 neg1cn 1
6 eqid BaseSet W = BaseSet W
7 eqid + v U = + v U
8 eqid + v W = + v W
9 eqid 𝑠OLD U = 𝑠OLD U
10 eqid 𝑠OLD W = 𝑠OLD W
11 1 6 7 8 9 10 4 lnolin U NrmCVec W NrmCVec T L 1 B X A X T -1 𝑠OLD U B + v U A = -1 𝑠OLD W T B + v W T A
12 5 11 mp3anr1 U NrmCVec W NrmCVec T L B X A X T -1 𝑠OLD U B + v U A = -1 𝑠OLD W T B + v W T A
13 12 ancom2s U NrmCVec W NrmCVec T L A X B X T -1 𝑠OLD U B + v U A = -1 𝑠OLD W T B + v W T A
14 1 7 9 2 nvmval2 U NrmCVec A X B X A M B = -1 𝑠OLD U B + v U A
15 14 3expb U NrmCVec A X B X A M B = -1 𝑠OLD U B + v U A
16 15 3ad2antl1 U NrmCVec W NrmCVec T L A X B X A M B = -1 𝑠OLD U B + v U A
17 16 fveq2d U NrmCVec W NrmCVec T L A X B X T A M B = T -1 𝑠OLD U B + v U A
18 simpl2 U NrmCVec W NrmCVec T L A X B X W NrmCVec
19 1 6 4 lnof U NrmCVec W NrmCVec T L T : X BaseSet W
20 simpl A X B X A X
21 ffvelrn T : X BaseSet W A X T A BaseSet W
22 19 20 21 syl2an U NrmCVec W NrmCVec T L A X B X T A BaseSet W
23 simpr A X B X B X
24 ffvelrn T : X BaseSet W B X T B BaseSet W
25 19 23 24 syl2an U NrmCVec W NrmCVec T L A X B X T B BaseSet W
26 6 8 10 3 nvmval2 W NrmCVec T A BaseSet W T B BaseSet W T A N T B = -1 𝑠OLD W T B + v W T A
27 18 22 25 26 syl3anc U NrmCVec W NrmCVec T L A X B X T A N T B = -1 𝑠OLD W T B + v W T A
28 13 17 27 3eqtr4d U NrmCVec W NrmCVec T L A X B X T A M B = T A N T B