Metamath Proof Explorer


Theorem lnperpex

Description: Existence of a perpendicular to a line L at a given point A . Theorem 10.15 of Schwabhauser p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses lmiopp.p P = Base G
lmiopp.m - ˙ = dist G
lmiopp.i I = Itv G
lmiopp.l L = Line 𝒢 G
lmiopp.g φ G 𝒢 Tarski
lmiopp.h φ G Dim 𝒢 2
lmiopp.d φ D ran L
lmiopp.o O = a b | a P D b P D t D t a I b
lnperpex.a φ A D
lnperpex.q φ Q P
lnperpex.1 φ ¬ Q D
Assertion lnperpex φ p P D 𝒢 G p L A p hp 𝒢 G D Q

Proof

Step Hyp Ref Expression
1 lmiopp.p P = Base G
2 lmiopp.m - ˙ = dist G
3 lmiopp.i I = Itv G
4 lmiopp.l L = Line 𝒢 G
5 lmiopp.g φ G 𝒢 Tarski
6 lmiopp.h φ G Dim 𝒢 2
7 lmiopp.d φ D ran L
8 lmiopp.o O = a b | a P D b P D t D t a I b
9 lnperpex.a φ A D
10 lnperpex.q φ Q P
11 lnperpex.1 φ ¬ Q D
12 5 ad4antr φ d D A d c P Q O c G 𝒢 Tarski
13 12 adantr φ d D A d c P Q O c p P A L p 𝒢 G D c O p G 𝒢 Tarski
14 simprl φ d D A d c P Q O c p P A L p 𝒢 G D c O p p P
15 1 4 3 5 7 9 tglnpt φ A P
16 15 ad2antrr φ d D A d A P
17 16 ad3antrrr φ d D A d c P Q O c p P A L p 𝒢 G D c O p A P
18 simprrl φ d D A d c P Q O c p P A L p 𝒢 G D c O p A L p 𝒢 G D
19 4 13 18 perpln1 φ d D A d c P Q O c p P A L p 𝒢 G D c O p A L p ran L
20 1 3 4 13 17 14 19 tglnne φ d D A d c P Q O c p P A L p 𝒢 G D c O p A p
21 20 necomd φ d D A d c P Q O c p P A L p 𝒢 G D c O p p A
22 1 3 4 13 14 17 21 tgelrnln φ d D A d c P Q O c p P A L p 𝒢 G D c O p p L A ran L
23 7 ad4antr φ d D A d c P Q O c D ran L
24 23 adantr φ d D A d c P Q O c p P A L p 𝒢 G D c O p D ran L
25 1 3 4 13 14 17 21 tglinecom φ d D A d c P Q O c p P A L p 𝒢 G D c O p p L A = A L p
26 25 18 eqbrtrd φ d D A d c P Q O c p P A L p 𝒢 G D c O p p L A 𝒢 G D
27 1 2 3 4 13 22 24 26 perpcom φ d D A d c P Q O c p P A L p 𝒢 G D c O p D 𝒢 G p L A
28 simplr φ d D A d c P Q O c p P A L p 𝒢 G D c O p Q O c
29 10 ad4antr φ d D A d c P Q O c Q P
30 29 adantr φ d D A d c P Q O c p P A L p 𝒢 G D c O p Q P
31 simplr φ d D A d c P Q O c c P
32 31 adantr φ d D A d c P Q O c p P A L p 𝒢 G D c O p c P
33 simprrr φ d D A d c P Q O c p P A L p 𝒢 G D c O p c O p
34 1 2 3 8 4 24 13 32 14 33 oppcom φ d D A d c P Q O c p P A L p 𝒢 G D c O p p O c
35 1 3 4 8 13 24 14 30 32 34 lnopp2hpgb φ d D A d c P Q O c p P A L p 𝒢 G D c O p Q O c p hp 𝒢 G D Q
36 28 35 mpbid φ d D A d c P Q O c p P A L p 𝒢 G D c O p p hp 𝒢 G D Q
37 27 36 jca φ d D A d c P Q O c p P A L p 𝒢 G D c O p D 𝒢 G p L A p hp 𝒢 G D Q
38 eqid hl 𝒢 G = hl 𝒢 G
39 9 ad4antr φ d D A d c P Q O c A D
40 simpr φ d D A d c P Q O c Q O c
41 1 2 3 8 4 23 12 29 31 40 oppne2 φ d D A d c P Q O c ¬ c D
42 6 ad4antr φ d D A d c P Q O c G Dim 𝒢 2
43 1 2 3 8 4 23 12 38 39 31 41 42 oppperpex φ d D A d c P Q O c p P A L p 𝒢 G D c O p
44 37 43 reximddv φ d D A d c P Q O c p P D 𝒢 G p L A p hp 𝒢 G D Q
45 1 3 4 5 7 10 8 11 hpgerlem φ c P Q O c
46 45 ad2antrr φ d D A d c P Q O c
47 44 46 r19.29a φ d D A d p P D 𝒢 G p L A p hp 𝒢 G D Q
48 1 3 4 5 7 9 tglnpt2 φ d D A d
49 47 48 r19.29a φ p P D 𝒢 G p L A p hp 𝒢 G D Q