Step |
Hyp |
Ref |
Expression |
1 |
|
lmiopp.p |
|
2 |
|
lmiopp.m |
|
3 |
|
lmiopp.i |
|
4 |
|
lmiopp.l |
|
5 |
|
lmiopp.g |
|
6 |
|
lmiopp.h |
|
7 |
|
lmiopp.d |
|
8 |
|
lmiopp.o |
|
9 |
|
lnperpex.a |
|
10 |
|
lnperpex.q |
|
11 |
|
lnperpex.1 |
|
12 |
5
|
ad4antr |
|
13 |
12
|
adantr |
|
14 |
|
simprl |
|
15 |
1 4 3 5 7 9
|
tglnpt |
|
16 |
15
|
ad2antrr |
|
17 |
16
|
ad3antrrr |
|
18 |
|
simprrl |
|
19 |
4 13 18
|
perpln1 |
|
20 |
1 3 4 13 17 14 19
|
tglnne |
|
21 |
20
|
necomd |
|
22 |
1 3 4 13 14 17 21
|
tgelrnln |
|
23 |
7
|
ad4antr |
|
24 |
23
|
adantr |
|
25 |
1 3 4 13 14 17 21
|
tglinecom |
|
26 |
25 18
|
eqbrtrd |
|
27 |
1 2 3 4 13 22 24 26
|
perpcom |
|
28 |
|
simplr |
|
29 |
10
|
ad4antr |
|
30 |
29
|
adantr |
|
31 |
|
simplr |
|
32 |
31
|
adantr |
|
33 |
|
simprrr |
|
34 |
1 2 3 8 4 24 13 32 14 33
|
oppcom |
|
35 |
1 3 4 8 13 24 14 30 32 34
|
lnopp2hpgb |
|
36 |
28 35
|
mpbid |
|
37 |
27 36
|
jca |
|
38 |
|
eqid |
|
39 |
9
|
ad4antr |
|
40 |
|
simpr |
|
41 |
1 2 3 8 4 23 12 29 31 40
|
oppne2 |
|
42 |
6
|
ad4antr |
|
43 |
1 2 3 8 4 23 12 38 39 31 41 42
|
oppperpex |
|
44 |
37 43
|
reximddv |
|
45 |
1 3 4 5 7 10 8 11
|
hpgerlem |
|
46 |
45
|
ad2antrr |
|
47 |
44 46
|
r19.29a |
|
48 |
1 3 4 5 7 9
|
tglnpt2 |
|
49 |
47 48
|
r19.29a |
|