| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmiopp.p |
|
| 2 |
|
lmiopp.m |
|
| 3 |
|
lmiopp.i |
|
| 4 |
|
lmiopp.l |
|
| 5 |
|
lmiopp.g |
|
| 6 |
|
lmiopp.h |
|
| 7 |
|
lmiopp.d |
|
| 8 |
|
lmiopp.o |
|
| 9 |
|
lnperpex.a |
|
| 10 |
|
lnperpex.q |
|
| 11 |
|
lnperpex.1 |
|
| 12 |
5
|
ad4antr |
|
| 13 |
12
|
adantr |
|
| 14 |
|
simprl |
|
| 15 |
1 4 3 5 7 9
|
tglnpt |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
16
|
ad3antrrr |
|
| 18 |
|
simprrl |
|
| 19 |
4 13 18
|
perpln1 |
|
| 20 |
1 3 4 13 17 14 19
|
tglnne |
|
| 21 |
20
|
necomd |
|
| 22 |
1 3 4 13 14 17 21
|
tgelrnln |
|
| 23 |
7
|
ad4antr |
|
| 24 |
23
|
adantr |
|
| 25 |
1 3 4 13 14 17 21
|
tglinecom |
|
| 26 |
25 18
|
eqbrtrd |
|
| 27 |
1 2 3 4 13 22 24 26
|
perpcom |
|
| 28 |
|
simplr |
|
| 29 |
10
|
ad4antr |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simplr |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simprrr |
|
| 34 |
1 2 3 8 4 24 13 32 14 33
|
oppcom |
|
| 35 |
1 3 4 8 13 24 14 30 32 34
|
lnopp2hpgb |
|
| 36 |
28 35
|
mpbid |
|
| 37 |
27 36
|
jca |
|
| 38 |
|
eqid |
|
| 39 |
9
|
ad4antr |
|
| 40 |
|
simpr |
|
| 41 |
1 2 3 8 4 23 12 29 31 40
|
oppne2 |
|
| 42 |
6
|
ad4antr |
|
| 43 |
1 2 3 8 4 23 12 38 39 31 41 42
|
oppperpex |
|
| 44 |
37 43
|
reximddv |
|
| 45 |
1 3 4 5 7 10 8 11
|
hpgerlem |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
44 46
|
r19.29a |
|
| 48 |
1 3 4 5 7 9
|
tglnpt2 |
|
| 49 |
47 48
|
r19.29a |
|