Metamath Proof Explorer


Theorem lnr2i

Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses lnr2i.u U = LIdeal R
lnr2i.n N = RSpan R
Assertion lnr2i R LNoeR I U g 𝒫 I Fin I = N g

Proof

Step Hyp Ref Expression
1 lnr2i.u U = LIdeal R
2 lnr2i.n N = RSpan R
3 eqid Base R = Base R
4 3 1 2 islnr2 R LNoeR R Ring i U g 𝒫 Base R Fin i = N g
5 4 simprbi R LNoeR i U g 𝒫 Base R Fin i = N g
6 eqeq1 i = I i = N g I = N g
7 6 rexbidv i = I g 𝒫 Base R Fin i = N g g 𝒫 Base R Fin I = N g
8 7 rspcva I U i U g 𝒫 Base R Fin i = N g g 𝒫 Base R Fin I = N g
9 5 8 sylan2 I U R LNoeR g 𝒫 Base R Fin I = N g
10 9 ancoms R LNoeR I U g 𝒫 Base R Fin I = N g
11 lnrring R LNoeR R Ring
12 2 3 rspssid R Ring g Base R g N g
13 11 12 sylan R LNoeR g Base R g N g
14 13 ex R LNoeR g Base R g N g
15 vex g V
16 15 elpw g 𝒫 Base R g Base R
17 15 elpw g 𝒫 N g g N g
18 14 16 17 3imtr4g R LNoeR g 𝒫 Base R g 𝒫 N g
19 18 anim1d R LNoeR g 𝒫 Base R g Fin g 𝒫 N g g Fin
20 elin g 𝒫 Base R Fin g 𝒫 Base R g Fin
21 elin g 𝒫 N g Fin g 𝒫 N g g Fin
22 19 20 21 3imtr4g R LNoeR g 𝒫 Base R Fin g 𝒫 N g Fin
23 pweq I = N g 𝒫 I = 𝒫 N g
24 23 ineq1d I = N g 𝒫 I Fin = 𝒫 N g Fin
25 24 eleq2d I = N g g 𝒫 I Fin g 𝒫 N g Fin
26 25 imbi2d I = N g g 𝒫 Base R Fin g 𝒫 I Fin g 𝒫 Base R Fin g 𝒫 N g Fin
27 22 26 syl5ibrcom R LNoeR I = N g g 𝒫 Base R Fin g 𝒫 I Fin
28 27 imdistand R LNoeR I = N g g 𝒫 Base R Fin I = N g g 𝒫 I Fin
29 ancom g 𝒫 Base R Fin I = N g I = N g g 𝒫 Base R Fin
30 ancom g 𝒫 I Fin I = N g I = N g g 𝒫 I Fin
31 28 29 30 3imtr4g R LNoeR g 𝒫 Base R Fin I = N g g 𝒫 I Fin I = N g
32 31 reximdv2 R LNoeR g 𝒫 Base R Fin I = N g g 𝒫 I Fin I = N g
33 32 adantr R LNoeR I U g 𝒫 Base R Fin I = N g g 𝒫 I Fin I = N g
34 10 33 mpd R LNoeR I U g 𝒫 I Fin I = N g