Metamath Proof Explorer


Theorem lo1add

Description: The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1add2.1 φ x A B V
o1add2.2 φ x A C V
lo1add.3 φ x A B 𝑂1
lo1add.4 φ x A C 𝑂1
Assertion lo1add φ x A B + C 𝑂1

Proof

Step Hyp Ref Expression
1 o1add2.1 φ x A B V
2 o1add2.2 φ x A C V
3 lo1add.3 φ x A B 𝑂1
4 lo1add.4 φ x A C 𝑂1
5 reeanv m n c x A c x B m c x A c x C n m c x A c x B m n c x A c x C n
6 1 ralrimiva φ x A B V
7 dmmptg x A B V dom x A B = A
8 6 7 syl φ dom x A B = A
9 lo1dm x A B 𝑂1 dom x A B
10 3 9 syl φ dom x A B
11 8 10 eqsstrrd φ A
12 11 adantr φ m n A
13 rexanre A c x A c x B m C n c x A c x B m c x A c x C n
14 12 13 syl φ m n c x A c x B m C n c x A c x B m c x A c x C n
15 readdcl m n m + n
16 15 adantl φ m n m + n
17 1 3 lo1mptrcl φ x A B
18 17 adantlr φ m n x A B
19 2 4 lo1mptrcl φ x A C
20 19 adantlr φ m n x A C
21 simplrl φ m n x A m
22 simplrr φ m n x A n
23 le2add B C m n B m C n B + C m + n
24 18 20 21 22 23 syl22anc φ m n x A B m C n B + C m + n
25 24 imim2d φ m n x A c x B m C n c x B + C m + n
26 25 ralimdva φ m n x A c x B m C n x A c x B + C m + n
27 breq2 p = m + n B + C p B + C m + n
28 27 imbi2d p = m + n c x B + C p c x B + C m + n
29 28 ralbidv p = m + n x A c x B + C p x A c x B + C m + n
30 29 rspcev m + n x A c x B + C m + n p x A c x B + C p
31 16 26 30 syl6an φ m n x A c x B m C n p x A c x B + C p
32 31 reximdv φ m n c x A c x B m C n c p x A c x B + C p
33 14 32 sylbird φ m n c x A c x B m c x A c x C n c p x A c x B + C p
34 33 rexlimdvva φ m n c x A c x B m c x A c x C n c p x A c x B + C p
35 5 34 syl5bir φ m c x A c x B m n c x A c x C n c p x A c x B + C p
36 11 17 ello1mpt φ x A B 𝑂1 c m x A c x B m
37 rexcom c m x A c x B m m c x A c x B m
38 36 37 bitrdi φ x A B 𝑂1 m c x A c x B m
39 11 19 ello1mpt φ x A C 𝑂1 c n x A c x C n
40 rexcom c n x A c x C n n c x A c x C n
41 39 40 bitrdi φ x A C 𝑂1 n c x A c x C n
42 38 41 anbi12d φ x A B 𝑂1 x A C 𝑂1 m c x A c x B m n c x A c x C n
43 17 19 readdcld φ x A B + C
44 11 43 ello1mpt φ x A B + C 𝑂1 c p x A c x B + C p
45 35 42 44 3imtr4d φ x A B 𝑂1 x A C 𝑂1 x A B + C 𝑂1
46 3 4 45 mp2and φ x A B + C 𝑂1