Metamath Proof Explorer


Theorem lo1bddrp

Description: Refine o1bdd2 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypotheses lo1bdd2.1 φ A
lo1bdd2.2 φ C
lo1bdd2.3 φ x A B
lo1bdd2.4 φ x A B 𝑂1
lo1bdd2.5 φ y C y M
lo1bdd2.6 φ x A y C y x < y B M
Assertion lo1bddrp φ m + x A B m

Proof

Step Hyp Ref Expression
1 lo1bdd2.1 φ A
2 lo1bdd2.2 φ C
3 lo1bdd2.3 φ x A B
4 lo1bdd2.4 φ x A B 𝑂1
5 lo1bdd2.5 φ y C y M
6 lo1bdd2.6 φ x A y C y x < y B M
7 1 2 3 4 5 6 lo1bdd2 φ n x A B n
8 simpr φ n n
9 8 recnd φ n n
10 9 abscld φ n n
11 9 absge0d φ n 0 n
12 10 11 ge0p1rpd φ n n + 1 +
13 simplr φ n x A n
14 10 adantr φ n x A n
15 peano2re n n + 1
16 14 15 syl φ n x A n + 1
17 13 leabsd φ n x A n n
18 14 lep1d φ n x A n n + 1
19 13 14 16 17 18 letrd φ n x A n n + 1
20 3 adantlr φ n x A B
21 letr B n n + 1 B n n n + 1 B n + 1
22 20 13 16 21 syl3anc φ n x A B n n n + 1 B n + 1
23 19 22 mpan2d φ n x A B n B n + 1
24 23 ralimdva φ n x A B n x A B n + 1
25 brralrspcev n + 1 + x A B n + 1 m + x A B m
26 12 24 25 syl6an φ n x A B n m + x A B m
27 26 rexlimdva φ n x A B n m + x A B m
28 7 27 mpd φ m + x A B m