| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lo1eq.1 |
|
| 2 |
|
lo1eq.2 |
|
| 3 |
|
lo1eq.3 |
|
| 4 |
|
lo1eq.4 |
|
| 5 |
|
lo1dm |
|
| 6 |
|
eqid |
|
| 7 |
6 1
|
dmmptd |
|
| 8 |
7
|
sseq1d |
|
| 9 |
5 8
|
imbitrid |
|
| 10 |
|
lo1dm |
|
| 11 |
|
eqid |
|
| 12 |
11 2
|
dmmptd |
|
| 13 |
12
|
sseq1d |
|
| 14 |
10 13
|
imbitrid |
|
| 15 |
|
simpr |
|
| 16 |
|
elin |
|
| 17 |
15 16
|
sylib |
|
| 18 |
17
|
simpld |
|
| 19 |
17
|
simprd |
|
| 20 |
|
elicopnf |
|
| 21 |
3 20
|
syl |
|
| 22 |
21
|
biimpa |
|
| 23 |
19 22
|
syldan |
|
| 24 |
23
|
simprd |
|
| 25 |
18 24
|
jca |
|
| 26 |
25 4
|
syldan |
|
| 27 |
26
|
mpteq2dva |
|
| 28 |
|
inss1 |
|
| 29 |
|
resmpt |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
|
resmpt |
|
| 32 |
28 31
|
ax-mp |
|
| 33 |
27 30 32
|
3eqtr4g |
|
| 34 |
|
resres |
|
| 35 |
|
resres |
|
| 36 |
33 34 35
|
3eqtr4g |
|
| 37 |
|
ssid |
|
| 38 |
|
resmpt |
|
| 39 |
|
reseq1 |
|
| 40 |
37 38 39
|
mp2b |
|
| 41 |
|
resmpt |
|
| 42 |
|
reseq1 |
|
| 43 |
37 41 42
|
mp2b |
|
| 44 |
36 40 43
|
3eqtr3g |
|
| 45 |
44
|
eleq1d |
|
| 46 |
45
|
adantr |
|
| 47 |
1
|
fmpttd |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
3
|
adantr |
|
| 51 |
48 49 50
|
lo1resb |
|
| 52 |
2
|
fmpttd |
|
| 53 |
52
|
adantr |
|
| 54 |
53 49 50
|
lo1resb |
|
| 55 |
46 51 54
|
3bitr4d |
|
| 56 |
55
|
ex |
|
| 57 |
9 14 56
|
pm5.21ndd |
|