Step |
Hyp |
Ref |
Expression |
1 |
|
lo1eq.1 |
|
2 |
|
lo1eq.2 |
|
3 |
|
lo1eq.3 |
|
4 |
|
lo1eq.4 |
|
5 |
|
lo1dm |
|
6 |
|
eqid |
|
7 |
6 1
|
dmmptd |
|
8 |
7
|
sseq1d |
|
9 |
5 8
|
syl5ib |
|
10 |
|
lo1dm |
|
11 |
|
eqid |
|
12 |
11 2
|
dmmptd |
|
13 |
12
|
sseq1d |
|
14 |
10 13
|
syl5ib |
|
15 |
|
simpr |
|
16 |
|
elin |
|
17 |
15 16
|
sylib |
|
18 |
17
|
simpld |
|
19 |
17
|
simprd |
|
20 |
|
elicopnf |
|
21 |
3 20
|
syl |
|
22 |
21
|
biimpa |
|
23 |
19 22
|
syldan |
|
24 |
23
|
simprd |
|
25 |
18 24
|
jca |
|
26 |
25 4
|
syldan |
|
27 |
26
|
mpteq2dva |
|
28 |
|
inss1 |
|
29 |
|
resmpt |
|
30 |
28 29
|
ax-mp |
|
31 |
|
resmpt |
|
32 |
28 31
|
ax-mp |
|
33 |
27 30 32
|
3eqtr4g |
|
34 |
|
resres |
|
35 |
|
resres |
|
36 |
33 34 35
|
3eqtr4g |
|
37 |
|
ssid |
|
38 |
|
resmpt |
|
39 |
|
reseq1 |
|
40 |
37 38 39
|
mp2b |
|
41 |
|
resmpt |
|
42 |
|
reseq1 |
|
43 |
37 41 42
|
mp2b |
|
44 |
36 40 43
|
3eqtr3g |
|
45 |
44
|
eleq1d |
|
46 |
45
|
adantr |
|
47 |
1
|
fmpttd |
|
48 |
47
|
adantr |
|
49 |
|
simpr |
|
50 |
3
|
adantr |
|
51 |
48 49 50
|
lo1resb |
|
52 |
2
|
fmpttd |
|
53 |
52
|
adantr |
|
54 |
53 49 50
|
lo1resb |
|
55 |
46 51 54
|
3bitr4d |
|
56 |
55
|
ex |
|
57 |
9 14 56
|
pm5.21ndd |
|