Metamath Proof Explorer


Theorem lo1f

Description: An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion lo1f F 𝑂1 F : dom F

Proof

Step Hyp Ref Expression
1 ello1 F 𝑂1 F 𝑝𝑚 x m y dom F x +∞ F y m
2 1 simplbi F 𝑂1 F 𝑝𝑚
3 reex V
4 3 3 elpm2 F 𝑝𝑚 F : dom F dom F
5 4 simplbi F 𝑝𝑚 F : dom F
6 2 5 syl F 𝑂1 F : dom F