Metamath Proof Explorer


Theorem lo1mul

Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1add2.1 φ x A B V
o1add2.2 φ x A C V
lo1add.3 φ x A B 𝑂1
lo1add.4 φ x A C 𝑂1
lo1mul.5 φ x A 0 B
Assertion lo1mul φ x A B C 𝑂1

Proof

Step Hyp Ref Expression
1 o1add2.1 φ x A B V
2 o1add2.2 φ x A C V
3 lo1add.3 φ x A B 𝑂1
4 lo1add.4 φ x A C 𝑂1
5 lo1mul.5 φ x A 0 B
6 reeanv m n c x A c x B m c x A c x C n m c x A c x B m n c x A c x C n
7 1 ralrimiva φ x A B V
8 dmmptg x A B V dom x A B = A
9 7 8 syl φ dom x A B = A
10 lo1dm x A B 𝑂1 dom x A B
11 3 10 syl φ dom x A B
12 9 11 eqsstrrd φ A
13 12 adantr φ m n A
14 rexanre A c x A c x B m C n c x A c x B m c x A c x C n
15 13 14 syl φ m n c x A c x B m C n c x A c x B m c x A c x C n
16 simprl φ m n m
17 simprr φ m n n
18 0re 0
19 ifcl n 0 if 0 n n 0
20 17 18 19 sylancl φ m n if 0 n n 0
21 16 20 remulcld φ m n m if 0 n n 0
22 simplrr φ m n x A n
23 max2 0 n n if 0 n n 0
24 18 22 23 sylancr φ m n x A n if 0 n n 0
25 2 4 lo1mptrcl φ x A C
26 25 adantlr φ m n x A C
27 22 18 19 sylancl φ m n x A if 0 n n 0
28 letr C n if 0 n n 0 C n n if 0 n n 0 C if 0 n n 0
29 26 22 27 28 syl3anc φ m n x A C n n if 0 n n 0 C if 0 n n 0
30 24 29 mpan2d φ m n x A C n C if 0 n n 0
31 1 3 lo1mptrcl φ x A B
32 31 adantlr φ m n x A B
33 5 adantlr φ m n x A 0 B
34 32 33 jca φ m n x A B 0 B
35 simplrl φ m n x A m
36 max1 0 n 0 if 0 n n 0
37 18 22 36 sylancr φ m n x A 0 if 0 n n 0
38 27 37 jca φ m n x A if 0 n n 0 0 if 0 n n 0
39 lemul12b B 0 B m C if 0 n n 0 0 if 0 n n 0 B m C if 0 n n 0 B C m if 0 n n 0
40 34 35 26 38 39 syl22anc φ m n x A B m C if 0 n n 0 B C m if 0 n n 0
41 30 40 sylan2d φ m n x A B m C n B C m if 0 n n 0
42 41 imim2d φ m n x A c x B m C n c x B C m if 0 n n 0
43 42 ralimdva φ m n x A c x B m C n x A c x B C m if 0 n n 0
44 breq2 p = m if 0 n n 0 B C p B C m if 0 n n 0
45 44 imbi2d p = m if 0 n n 0 c x B C p c x B C m if 0 n n 0
46 45 ralbidv p = m if 0 n n 0 x A c x B C p x A c x B C m if 0 n n 0
47 46 rspcev m if 0 n n 0 x A c x B C m if 0 n n 0 p x A c x B C p
48 21 43 47 syl6an φ m n x A c x B m C n p x A c x B C p
49 48 reximdv φ m n c x A c x B m C n c p x A c x B C p
50 15 49 sylbird φ m n c x A c x B m c x A c x C n c p x A c x B C p
51 50 rexlimdvva φ m n c x A c x B m c x A c x C n c p x A c x B C p
52 6 51 syl5bir φ m c x A c x B m n c x A c x C n c p x A c x B C p
53 12 31 ello1mpt φ x A B 𝑂1 c m x A c x B m
54 rexcom c m x A c x B m m c x A c x B m
55 53 54 bitrdi φ x A B 𝑂1 m c x A c x B m
56 12 25 ello1mpt φ x A C 𝑂1 c n x A c x C n
57 rexcom c n x A c x C n n c x A c x C n
58 56 57 bitrdi φ x A C 𝑂1 n c x A c x C n
59 55 58 anbi12d φ x A B 𝑂1 x A C 𝑂1 m c x A c x B m n c x A c x C n
60 31 25 remulcld φ x A B C
61 12 60 ello1mpt φ x A B C 𝑂1 c p x A c x B C p
62 52 59 61 3imtr4d φ x A B 𝑂1 x A C 𝑂1 x A B C 𝑂1
63 3 4 62 mp2and φ x A B C 𝑂1