Metamath Proof Explorer


Theorem lo1mul2

Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1add2.1 φ x A B V
o1add2.2 φ x A C V
lo1add.3 φ x A B 𝑂1
lo1add.4 φ x A C 𝑂1
lo1mul.5 φ x A 0 B
Assertion lo1mul2 φ x A C B 𝑂1

Proof

Step Hyp Ref Expression
1 o1add2.1 φ x A B V
2 o1add2.2 φ x A C V
3 lo1add.3 φ x A B 𝑂1
4 lo1add.4 φ x A C 𝑂1
5 lo1mul.5 φ x A 0 B
6 2 4 lo1mptrcl φ x A C
7 6 recnd φ x A C
8 1 3 lo1mptrcl φ x A B
9 8 recnd φ x A B
10 7 9 mulcomd φ x A C B = B C
11 10 mpteq2dva φ x A C B = x A B C
12 1 2 3 4 5 lo1mul φ x A B C 𝑂1
13 11 12 eqeltrd φ x A C B 𝑂1