Metamath Proof Explorer


Theorem lo1o1

Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion lo1o1 F : A F 𝑂1 abs F 𝑂1

Proof

Step Hyp Ref Expression
1 o1dm F 𝑂1 dom F
2 fdm F : A dom F = A
3 2 sseq1d F : A dom F A
4 1 3 syl5ib F : A F 𝑂1 A
5 lo1dm abs F 𝑂1 dom abs F
6 absf abs :
7 fco abs : F : A abs F : A
8 6 7 mpan F : A abs F : A
9 8 fdmd F : A dom abs F = A
10 9 sseq1d F : A dom abs F A
11 5 10 syl5ib F : A abs F 𝑂1 A
12 fvco3 F : A y A abs F y = F y
13 12 adantlr F : A A y A abs F y = F y
14 13 breq1d F : A A y A abs F y m F y m
15 14 imbi2d F : A A y A x y abs F y m x y F y m
16 15 ralbidva F : A A y A x y abs F y m y A x y F y m
17 16 2rexbidv F : A A x m y A x y abs F y m x m y A x y F y m
18 ello12 abs F : A A abs F 𝑂1 x m y A x y abs F y m
19 8 18 sylan F : A A abs F 𝑂1 x m y A x y abs F y m
20 elo12 F : A A F 𝑂1 x m y A x y F y m
21 17 19 20 3bitr4rd F : A A F 𝑂1 abs F 𝑂1
22 21 ex F : A A F 𝑂1 abs F 𝑂1
23 4 11 22 pm5.21ndd F : A F 𝑂1 abs F 𝑂1