| Step | Hyp | Ref | Expression | 
						
							| 1 |  | locfindis.1 |  | 
						
							| 2 |  | lfinpfin |  | 
						
							| 3 |  | unipw |  | 
						
							| 4 | 3 | eqcomi |  | 
						
							| 5 | 4 1 | locfinbas |  | 
						
							| 6 | 2 5 | jca |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | uniexg |  | 
						
							| 9 | 1 8 | eqeltrid |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 7 10 | eqeltrd |  | 
						
							| 12 |  | distop |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 |  | snelpwi |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | snidg |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | simpll |  | 
						
							| 19 | 7 | eleq2d |  | 
						
							| 20 | 19 | biimpa |  | 
						
							| 21 | 1 | ptfinfin |  | 
						
							| 22 | 18 20 21 | syl2anc |  | 
						
							| 23 |  | eleq2 |  | 
						
							| 24 |  | ineq2 |  | 
						
							| 25 | 24 | neeq1d |  | 
						
							| 26 |  | disjsn |  | 
						
							| 27 | 26 | necon2abii |  | 
						
							| 28 | 25 27 | bitr4di |  | 
						
							| 29 | 28 | rabbidv |  | 
						
							| 30 | 29 | eleq1d |  | 
						
							| 31 | 23 30 | anbi12d |  | 
						
							| 32 | 31 | rspcev |  | 
						
							| 33 | 15 17 22 32 | syl12anc |  | 
						
							| 34 | 33 | ralrimiva |  | 
						
							| 35 | 4 1 | islocfin |  | 
						
							| 36 | 13 7 34 35 | syl3anbrc |  | 
						
							| 37 | 6 36 | impbii |  |