Metamath Proof Explorer


Theorem log1

Description: The natural logarithm of 1 . One case of Property 1a of Cohen p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion log1 log 1 = 0

Proof

Step Hyp Ref Expression
1 ef0 e 0 = 1
2 1rp 1 +
3 0re 0
4 relogeftb 1 + 0 log 1 = 0 e 0 = 1
5 2 3 4 mp2an log 1 = 0 e 0 = 1
6 1 5 mpbir log 1 = 0