Metamath Proof Explorer


Theorem log2le1

Description: log 2 is less than 1 . This is just a weaker form of log2ub when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion log2le1 log 2 < 1

Proof

Step Hyp Ref Expression
1 log2ub log 2 < 253 365
2 2nn0 2 0
3 3nn0 3 0
4 5nn0 5 0
5 6nn0 6 0
6 2lt3 2 < 3
7 5lt10 5 < 10
8 3lt10 3 < 10
9 2 3 4 5 3 4 6 7 8 3decltc 253 < 365
10 2 4 deccl 25 0
11 10 3 deccl 253 0
12 11 nn0rei 253
13 3 5 deccl 36 0
14 13 4 deccl 365 0
15 14 nn0rei 365
16 6nn 6
17 3 16 decnncl 36
18 0nn0 0 0
19 10pos 0 < 10
20 17 4 18 19 declti 0 < 365
21 12 15 15 20 ltdiv1ii 253 < 365 253 365 < 365 365
22 9 21 mpbi 253 365 < 365 365
23 15 recni 365
24 0re 0
25 24 20 gtneii 365 0
26 23 25 dividi 365 365 = 1
27 22 26 breqtri 253 365 < 1
28 2rp 2 +
29 relogcl 2 + log 2
30 28 29 ax-mp log 2
31 12 15 25 redivcli 253 365
32 1re 1
33 30 31 32 lttri log 2 < 253 365 253 365 < 1 log 2 < 1
34 1 27 33 mp2an log 2 < 1