Metamath Proof Explorer


Theorem log2tlbnd

Description: Bound the error term in the series of log2cnv . (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Assertion log2tlbnd N 0 log 2 n = 0 N 1 2 3 2 n + 1 9 n 0 3 4 2 N + 1 9 N

Proof

Step Hyp Ref Expression
1 fzfid N 0 0 N 1 Fin
2 elfznn0 n 0 N 1 n 0
3 2re 2
4 3nn 3
5 2nn0 2 0
6 simpr N 0 n 0 n 0
7 nn0mulcl 2 0 n 0 2 n 0
8 5 6 7 sylancr N 0 n 0 2 n 0
9 nn0p1nn 2 n 0 2 n + 1
10 8 9 syl N 0 n 0 2 n + 1
11 nnmulcl 3 2 n + 1 3 2 n + 1
12 4 10 11 sylancr N 0 n 0 3 2 n + 1
13 9nn 9
14 nnexpcl 9 n 0 9 n
15 13 6 14 sylancr N 0 n 0 9 n
16 12 15 nnmulcld N 0 n 0 3 2 n + 1 9 n
17 nndivre 2 3 2 n + 1 9 n 2 3 2 n + 1 9 n
18 3 16 17 sylancr N 0 n 0 2 3 2 n + 1 9 n
19 18 recnd N 0 n 0 2 3 2 n + 1 9 n
20 2 19 sylan2 N 0 n 0 N 1 2 3 2 n + 1 9 n
21 1 20 fsumcl N 0 n = 0 N 1 2 3 2 n + 1 9 n
22 eqid N = N
23 nn0z N 0 N
24 eluznn0 N 0 n N n 0
25 oveq2 k = n 2 k = 2 n
26 25 oveq1d k = n 2 k + 1 = 2 n + 1
27 26 oveq2d k = n 3 2 k + 1 = 3 2 n + 1
28 oveq2 k = n 9 k = 9 n
29 27 28 oveq12d k = n 3 2 k + 1 9 k = 3 2 n + 1 9 n
30 29 oveq2d k = n 2 3 2 k + 1 9 k = 2 3 2 n + 1 9 n
31 eqid k 0 2 3 2 k + 1 9 k = k 0 2 3 2 k + 1 9 k
32 ovex 2 3 2 n + 1 9 n V
33 30 31 32 fvmpt n 0 k 0 2 3 2 k + 1 9 k n = 2 3 2 n + 1 9 n
34 24 33 syl N 0 n N k 0 2 3 2 k + 1 9 k n = 2 3 2 n + 1 9 n
35 24 18 syldan N 0 n N 2 3 2 n + 1 9 n
36 31 log2cnv seq 0 + k 0 2 3 2 k + 1 9 k log 2
37 seqex seq 0 + k 0 2 3 2 k + 1 9 k V
38 fvex log 2 V
39 37 38 breldm seq 0 + k 0 2 3 2 k + 1 9 k log 2 seq 0 + k 0 2 3 2 k + 1 9 k dom
40 36 39 mp1i N 0 seq 0 + k 0 2 3 2 k + 1 9 k dom
41 nn0uz 0 = 0
42 id N 0 N 0
43 33 adantl N 0 n 0 k 0 2 3 2 k + 1 9 k n = 2 3 2 n + 1 9 n
44 43 19 eqeltrd N 0 n 0 k 0 2 3 2 k + 1 9 k n
45 41 42 44 iserex N 0 seq 0 + k 0 2 3 2 k + 1 9 k dom seq N + k 0 2 3 2 k + 1 9 k dom
46 40 45 mpbid N 0 seq N + k 0 2 3 2 k + 1 9 k dom
47 22 23 34 35 46 isumrecl N 0 n N 2 3 2 n + 1 9 n
48 47 recnd N 0 n N 2 3 2 n + 1 9 n
49 0zd N 0 0
50 36 a1i N 0 seq 0 + k 0 2 3 2 k + 1 9 k log 2
51 41 49 43 19 50 isumclim N 0 n 0 2 3 2 n + 1 9 n = log 2
52 41 22 42 43 19 40 isumsplit N 0 n 0 2 3 2 n + 1 9 n = n = 0 N 1 2 3 2 n + 1 9 n + n N 2 3 2 n + 1 9 n
53 51 52 eqtr3d N 0 log 2 = n = 0 N 1 2 3 2 n + 1 9 n + n N 2 3 2 n + 1 9 n
54 21 48 53 mvrladdd N 0 log 2 n = 0 N 1 2 3 2 n + 1 9 n = n N 2 3 2 n + 1 9 n
55 3 a1i N 0 n 0 2
56 0le2 0 2
57 56 a1i N 0 n 0 0 2
58 16 nnred N 0 n 0 3 2 n + 1 9 n
59 16 nngt0d N 0 n 0 0 < 3 2 n + 1 9 n
60 divge0 2 0 2 3 2 n + 1 9 n 0 < 3 2 n + 1 9 n 0 2 3 2 n + 1 9 n
61 55 57 58 59 60 syl22anc N 0 n 0 0 2 3 2 n + 1 9 n
62 24 61 syldan N 0 n N 0 2 3 2 n + 1 9 n
63 22 23 34 35 46 62 isumge0 N 0 0 n N 2 3 2 n + 1 9 n
64 oveq2 k = n 1 9 k = 1 9 n
65 64 oveq2d k = n 2 3 2 N + 1 1 9 k = 2 3 2 N + 1 1 9 n
66 eqid k 0 2 3 2 N + 1 1 9 k = k 0 2 3 2 N + 1 1 9 k
67 ovex 2 3 2 N + 1 1 9 n V
68 65 66 67 fvmpt n 0 k 0 2 3 2 N + 1 1 9 k n = 2 3 2 N + 1 1 9 n
69 68 adantl N 0 n 0 k 0 2 3 2 N + 1 1 9 k n = 2 3 2 N + 1 1 9 n
70 9cn 9
71 70 a1i N 0 n 0 9
72 13 nnne0i 9 0
73 72 a1i N 0 n 0 9 0
74 nn0z n 0 n
75 74 adantl N 0 n 0 n
76 71 73 75 exprecd N 0 n 0 1 9 n = 1 9 n
77 76 oveq2d N 0 n 0 2 3 2 N + 1 1 9 n = 2 3 2 N + 1 1 9 n
78 nn0mulcl 2 0 N 0 2 N 0
79 5 78 mpan N 0 2 N 0
80 nn0p1nn 2 N 0 2 N + 1
81 79 80 syl N 0 2 N + 1
82 nnmulcl 3 2 N + 1 3 2 N + 1
83 4 81 82 sylancr N 0 3 2 N + 1
84 nndivre 2 3 2 N + 1 2 3 2 N + 1
85 3 83 84 sylancr N 0 2 3 2 N + 1
86 85 recnd N 0 2 3 2 N + 1
87 86 adantr N 0 n 0 2 3 2 N + 1
88 15 nncnd N 0 n 0 9 n
89 15 nnne0d N 0 n 0 9 n 0
90 87 88 89 divrecd N 0 n 0 2 3 2 N + 1 9 n = 2 3 2 N + 1 1 9 n
91 2cnd N 0 n 0 2
92 83 adantr N 0 n 0 3 2 N + 1
93 92 nncnd N 0 n 0 3 2 N + 1
94 92 nnne0d N 0 n 0 3 2 N + 1 0
95 91 93 88 94 89 divdiv1d N 0 n 0 2 3 2 N + 1 9 n = 2 3 2 N + 1 9 n
96 77 90 95 3eqtr2d N 0 n 0 2 3 2 N + 1 1 9 n = 2 3 2 N + 1 9 n
97 69 96 eqtrd N 0 n 0 k 0 2 3 2 N + 1 1 9 k n = 2 3 2 N + 1 9 n
98 24 97 syldan N 0 n N k 0 2 3 2 N + 1 1 9 k n = 2 3 2 N + 1 9 n
99 92 15 nnmulcld N 0 n 0 3 2 N + 1 9 n
100 nndivre 2 3 2 N + 1 9 n 2 3 2 N + 1 9 n
101 3 99 100 sylancr N 0 n 0 2 3 2 N + 1 9 n
102 24 101 syldan N 0 n N 2 3 2 N + 1 9 n
103 79 adantr N 0 n N 2 N 0
104 103 nn0red N 0 n N 2 N
105 5 24 7 sylancr N 0 n N 2 n 0
106 105 nn0red N 0 n N 2 n
107 1red N 0 n N 1
108 eluzle n N N n
109 108 adantl N 0 n N N n
110 nn0re N 0 N
111 110 adantr N 0 n N N
112 24 nn0red N 0 n N n
113 3 a1i N 0 n N 2
114 2pos 0 < 2
115 114 a1i N 0 n N 0 < 2
116 lemul2 N n 2 0 < 2 N n 2 N 2 n
117 111 112 113 115 116 syl112anc N 0 n N N n 2 N 2 n
118 109 117 mpbid N 0 n N 2 N 2 n
119 104 106 107 118 leadd1dd N 0 n N 2 N + 1 2 n + 1
120 81 adantr N 0 n N 2 N + 1
121 120 nnred N 0 n N 2 N + 1
122 24 10 syldan N 0 n N 2 n + 1
123 122 nnred N 0 n N 2 n + 1
124 3re 3
125 124 a1i N 0 n N 3
126 3pos 0 < 3
127 126 a1i N 0 n N 0 < 3
128 lemul2 2 N + 1 2 n + 1 3 0 < 3 2 N + 1 2 n + 1 3 2 N + 1 3 2 n + 1
129 121 123 125 127 128 syl112anc N 0 n N 2 N + 1 2 n + 1 3 2 N + 1 3 2 n + 1
130 119 129 mpbid N 0 n N 3 2 N + 1 3 2 n + 1
131 83 adantr N 0 n N 3 2 N + 1
132 131 nnred N 0 n N 3 2 N + 1
133 24 12 syldan N 0 n N 3 2 n + 1
134 133 nnred N 0 n N 3 2 n + 1
135 13 24 14 sylancr N 0 n N 9 n
136 135 nnred N 0 n N 9 n
137 135 nngt0d N 0 n N 0 < 9 n
138 lemul1 3 2 N + 1 3 2 n + 1 9 n 0 < 9 n 3 2 N + 1 3 2 n + 1 3 2 N + 1 9 n 3 2 n + 1 9 n
139 132 134 136 137 138 syl112anc N 0 n N 3 2 N + 1 3 2 n + 1 3 2 N + 1 9 n 3 2 n + 1 9 n
140 130 139 mpbid N 0 n N 3 2 N + 1 9 n 3 2 n + 1 9 n
141 24 99 syldan N 0 n N 3 2 N + 1 9 n
142 141 nnred N 0 n N 3 2 N + 1 9 n
143 141 nngt0d N 0 n N 0 < 3 2 N + 1 9 n
144 24 58 syldan N 0 n N 3 2 n + 1 9 n
145 24 59 syldan N 0 n N 0 < 3 2 n + 1 9 n
146 lediv2 3 2 N + 1 9 n 0 < 3 2 N + 1 9 n 3 2 n + 1 9 n 0 < 3 2 n + 1 9 n 2 0 < 2 3 2 N + 1 9 n 3 2 n + 1 9 n 2 3 2 n + 1 9 n 2 3 2 N + 1 9 n
147 142 143 144 145 113 115 146 syl222anc N 0 n N 3 2 N + 1 9 n 3 2 n + 1 9 n 2 3 2 n + 1 9 n 2 3 2 N + 1 9 n
148 140 147 mpbid N 0 n N 2 3 2 n + 1 9 n 2 3 2 N + 1 9 n
149 9re 9
150 149 72 rereccli 1 9
151 150 recni 1 9
152 151 a1i N 0 1 9
153 0re 0
154 9pos 0 < 9
155 149 154 recgt0ii 0 < 1 9
156 153 150 155 ltleii 0 1 9
157 absid 1 9 0 1 9 1 9 = 1 9
158 150 156 157 mp2an 1 9 = 1 9
159 1lt9 1 < 9
160 recgt1i 9 1 < 9 0 < 1 9 1 9 < 1
161 149 159 160 mp2an 0 < 1 9 1 9 < 1
162 161 simpri 1 9 < 1
163 158 162 eqbrtri 1 9 < 1
164 163 a1i N 0 1 9 < 1
165 eqid k 0 1 9 k = k 0 1 9 k
166 ovex 1 9 n V
167 64 165 166 fvmpt n 0 k 0 1 9 k n = 1 9 n
168 24 167 syl N 0 n N k 0 1 9 k n = 1 9 n
169 152 164 42 168 geolim2 N 0 seq N + k 0 1 9 k 1 9 N 1 1 9
170 70 a1i N 0 9
171 72 a1i N 0 9 0
172 170 171 23 exprecd N 0 1 9 N = 1 9 N
173 70 72 dividi 9 9 = 1
174 173 oveq1i 9 9 1 9 = 1 1 9
175 ax-1cn 1
176 70 72 pm3.2i 9 9 0
177 divsubdir 9 1 9 9 0 9 1 9 = 9 9 1 9
178 70 175 176 177 mp3an 9 1 9 = 9 9 1 9
179 9m1e8 9 1 = 8
180 179 oveq1i 9 1 9 = 8 9
181 178 180 eqtr3i 9 9 1 9 = 8 9
182 174 181 eqtr3i 1 1 9 = 8 9
183 182 a1i N 0 1 1 9 = 8 9
184 172 183 oveq12d N 0 1 9 N 1 1 9 = 1 9 N 8 9
185 175 a1i N 0 1
186 nnexpcl 9 N 0 9 N
187 13 186 mpan N 0 9 N
188 187 nncnd N 0 9 N
189 8cn 8
190 189 70 72 divcli 8 9
191 190 a1i N 0 8 9
192 187 nnne0d N 0 9 N 0
193 8nn 8
194 193 nnne0i 8 0
195 189 70 194 72 divne0i 8 9 0
196 195 a1i N 0 8 9 0
197 185 188 191 192 196 divdiv32d N 0 1 9 N 8 9 = 1 8 9 9 N
198 recdiv 8 8 0 9 9 0 1 8 9 = 9 8
199 189 194 70 72 198 mp4an 1 8 9 = 9 8
200 199 oveq1i 1 8 9 9 N = 9 8 9 N
201 189 a1i N 0 8
202 194 a1i N 0 8 0
203 170 201 188 202 192 divdiv1d N 0 9 8 9 N = 9 8 9 N
204 200 203 syl5eq N 0 1 8 9 9 N = 9 8 9 N
205 184 197 204 3eqtrd N 0 1 9 N 1 1 9 = 9 8 9 N
206 169 205 breqtrd N 0 seq N + k 0 1 9 k 9 8 9 N
207 expcl 1 9 n 0 1 9 n
208 151 24 207 sylancr N 0 n N 1 9 n
209 168 208 eqeltrd N 0 n N k 0 1 9 k n
210 24 68 syl N 0 n N k 0 2 3 2 N + 1 1 9 k n = 2 3 2 N + 1 1 9 n
211 168 oveq2d N 0 n N 2 3 2 N + 1 k 0 1 9 k n = 2 3 2 N + 1 1 9 n
212 210 211 eqtr4d N 0 n N k 0 2 3 2 N + 1 1 9 k n = 2 3 2 N + 1 k 0 1 9 k n
213 22 23 86 206 209 212 isermulc2 N 0 seq N + k 0 2 3 2 N + 1 1 9 k 2 3 2 N + 1 9 8 9 N
214 seqex seq N + k 0 2 3 2 N + 1 1 9 k V
215 ovex 2 3 2 N + 1 9 8 9 N V
216 214 215 breldm seq N + k 0 2 3 2 N + 1 1 9 k 2 3 2 N + 1 9 8 9 N seq N + k 0 2 3 2 N + 1 1 9 k dom
217 213 216 syl N 0 seq N + k 0 2 3 2 N + 1 1 9 k dom
218 22 23 34 35 98 102 148 46 217 isumle N 0 n N 2 3 2 n + 1 9 n n N 2 3 2 N + 1 9 n
219 102 recnd N 0 n N 2 3 2 N + 1 9 n
220 3cn 3
221 4cn 4
222 2cn 2
223 4ne0 4 0
224 3ne0 3 0
225 2ne0 2 0
226 220 221 222 220 223 224 225 divdivdivi 3 4 2 3 = 3 3 4 2
227 3t3e9 3 3 = 9
228 4t2e8 4 2 = 8
229 227 228 oveq12i 3 3 4 2 = 9 8
230 226 229 eqtri 3 4 2 3 = 9 8
231 230 oveq2i 2 3 3 4 2 3 = 2 3 9 8
232 220 221 223 divcli 3 4
233 222 220 224 divcli 2 3
234 222 220 225 224 divne0i 2 3 0
235 232 233 234 divcan2i 2 3 3 4 2 3 = 3 4
236 231 235 eqtr3i 2 3 9 8 = 3 4
237 236 oveq1i 2 3 9 8 2 N + 1 9 N = 3 4 2 N + 1 9 N
238 2cnd N 0 2
239 220 a1i N 0 3
240 81 nncnd N 0 2 N + 1
241 224 a1i N 0 3 0
242 81 nnne0d N 0 2 N + 1 0
243 238 239 240 241 242 divdiv1d N 0 2 3 2 N + 1 = 2 3 2 N + 1
244 243 203 oveq12d N 0 2 3 2 N + 1 9 8 9 N = 2 3 2 N + 1 9 8 9 N
245 233 a1i N 0 2 3
246 70 189 194 divcli 9 8
247 246 a1i N 0 9 8
248 245 240 247 188 242 192 divmuldivd N 0 2 3 2 N + 1 9 8 9 N = 2 3 9 8 2 N + 1 9 N
249 244 248 eqtr3d N 0 2 3 2 N + 1 9 8 9 N = 2 3 9 8 2 N + 1 9 N
250 221 a1i N 0 4
251 250 240 188 mulassd N 0 4 2 N + 1 9 N = 4 2 N + 1 9 N
252 251 oveq2d N 0 3 4 2 N + 1 9 N = 3 4 2 N + 1 9 N
253 81 187 nnmulcld N 0 2 N + 1 9 N
254 253 nncnd N 0 2 N + 1 9 N
255 223 a1i N 0 4 0
256 253 nnne0d N 0 2 N + 1 9 N 0
257 239 250 254 255 256 divdiv1d N 0 3 4 2 N + 1 9 N = 3 4 2 N + 1 9 N
258 252 257 eqtr4d N 0 3 4 2 N + 1 9 N = 3 4 2 N + 1 9 N
259 237 249 258 3eqtr4a N 0 2 3 2 N + 1 9 8 9 N = 3 4 2 N + 1 9 N
260 213 259 breqtrd N 0 seq N + k 0 2 3 2 N + 1 1 9 k 3 4 2 N + 1 9 N
261 22 23 98 219 260 isumclim N 0 n N 2 3 2 N + 1 9 n = 3 4 2 N + 1 9 N
262 218 261 breqtrd N 0 n N 2 3 2 n + 1 9 n 3 4 2 N + 1 9 N
263 4nn 4
264 nnmulcl 4 2 N + 1 4 2 N + 1
265 263 81 264 sylancr N 0 4 2 N + 1
266 265 187 nnmulcld N 0 4 2 N + 1 9 N
267 nndivre 3 4 2 N + 1 9 N 3 4 2 N + 1 9 N
268 124 266 267 sylancr N 0 3 4 2 N + 1 9 N
269 elicc2 0 3 4 2 N + 1 9 N n N 2 3 2 n + 1 9 n 0 3 4 2 N + 1 9 N n N 2 3 2 n + 1 9 n 0 n N 2 3 2 n + 1 9 n n N 2 3 2 n + 1 9 n 3 4 2 N + 1 9 N
270 153 268 269 sylancr N 0 n N 2 3 2 n + 1 9 n 0 3 4 2 N + 1 9 N n N 2 3 2 n + 1 9 n 0 n N 2 3 2 n + 1 9 n n N 2 3 2 n + 1 9 n 3 4 2 N + 1 9 N
271 47 63 262 270 mpbir3and N 0 n N 2 3 2 n + 1 9 n 0 3 4 2 N + 1 9 N
272 54 271 eqeltrd N 0 log 2 n = 0 N 1 2 3 2 n + 1 9 n 0 3 4 2 N + 1 9 N