Metamath Proof Explorer


Theorem log2ublem2

Description: Lemma for log2ub . (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses log2ublem2.1 3 7 5 7 n = 0 K 2 3 2 n + 1 9 n 2 B
log2ublem2.2 B 0
log2ublem2.3 F 0
log2ublem2.4 N 0
log2ublem2.5 N 1 = K
log2ublem2.6 B + F = G
log2ublem2.7 M 0
log2ublem2.8 M + N = 3
log2ublem2.9 5 7 9 M = 2 N + 1 F
Assertion log2ublem2 3 7 5 7 n = 0 N 2 3 2 n + 1 9 n 2 G

Proof

Step Hyp Ref Expression
1 log2ublem2.1 3 7 5 7 n = 0 K 2 3 2 n + 1 9 n 2 B
2 log2ublem2.2 B 0
3 log2ublem2.3 F 0
4 log2ublem2.4 N 0
5 log2ublem2.5 N 1 = K
6 log2ublem2.6 B + F = G
7 log2ublem2.7 M 0
8 log2ublem2.8 M + N = 3
9 log2ublem2.9 5 7 9 M = 2 N + 1 F
10 fzfid 0 K Fin
11 elfznn0 n 0 K n 0
12 11 adantl n 0 K n 0
13 2re 2
14 3nn 3
15 2nn0 2 0
16 nn0mulcl 2 0 n 0 2 n 0
17 15 16 mpan n 0 2 n 0
18 nn0p1nn 2 n 0 2 n + 1
19 17 18 syl n 0 2 n + 1
20 nnmulcl 3 2 n + 1 3 2 n + 1
21 14 19 20 sylancr n 0 3 2 n + 1
22 9nn 9
23 nnexpcl 9 n 0 9 n
24 22 23 mpan n 0 9 n
25 21 24 nnmulcld n 0 3 2 n + 1 9 n
26 nndivre 2 3 2 n + 1 9 n 2 3 2 n + 1 9 n
27 13 25 26 sylancr n 0 2 3 2 n + 1 9 n
28 12 27 syl n 0 K 2 3 2 n + 1 9 n
29 10 28 fsumrecl n = 0 K 2 3 2 n + 1 9 n
30 29 mptru n = 0 K 2 3 2 n + 1 9 n
31 15 4 nn0mulcli 2 N 0
32 nn0p1nn 2 N 0 2 N + 1
33 31 32 ax-mp 2 N + 1
34 14 33 nnmulcli 3 2 N + 1
35 nnexpcl 9 N 0 9 N
36 22 4 35 mp2an 9 N
37 34 36 nnmulcli 3 2 N + 1 9 N
38 15 2 nn0mulcli 2 B 0
39 15 3 nn0mulcli 2 F 0
40 nn0uz 0 = 0
41 4 40 eleqtri N 0
42 41 a1i N 0
43 elfznn0 n 0 N n 0
44 43 adantl n 0 N n 0
45 27 recnd n 0 2 3 2 n + 1 9 n
46 44 45 syl n 0 N 2 3 2 n + 1 9 n
47 oveq2 n = N 2 n = 2 N
48 47 oveq1d n = N 2 n + 1 = 2 N + 1
49 48 oveq2d n = N 3 2 n + 1 = 3 2 N + 1
50 oveq2 n = N 9 n = 9 N
51 49 50 oveq12d n = N 3 2 n + 1 9 n = 3 2 N + 1 9 N
52 51 oveq2d n = N 2 3 2 n + 1 9 n = 2 3 2 N + 1 9 N
53 42 46 52 fsumm1 n = 0 N 2 3 2 n + 1 9 n = n = 0 N 1 2 3 2 n + 1 9 n + 2 3 2 N + 1 9 N
54 53 mptru n = 0 N 2 3 2 n + 1 9 n = n = 0 N 1 2 3 2 n + 1 9 n + 2 3 2 N + 1 9 N
55 5 oveq2i 0 N 1 = 0 K
56 55 sumeq1i n = 0 N 1 2 3 2 n + 1 9 n = n = 0 K 2 3 2 n + 1 9 n
57 56 oveq1i n = 0 N 1 2 3 2 n + 1 9 n + 2 3 2 N + 1 9 N = n = 0 K 2 3 2 n + 1 9 n + 2 3 2 N + 1 9 N
58 54 57 eqtri n = 0 N 2 3 2 n + 1 9 n = n = 0 K 2 3 2 n + 1 9 n + 2 3 2 N + 1 9 N
59 2cn 2
60 2 nn0cni B
61 3 nn0cni F
62 59 60 61 adddii 2 B + F = 2 B + 2 F
63 6 oveq2i 2 B + F = 2 G
64 62 63 eqtr3i 2 B + 2 F = 2 G
65 7nn 7
66 65 nnnn0i 7 0
67 nnexpcl 3 7 0 3 7
68 14 66 67 mp2an 3 7
69 5nn 5
70 69 65 nnmulcli 5 7
71 68 70 nnmulcli 3 7 5 7
72 71 nnrei 3 7 5 7
73 72 13 remulcli 3 7 5 7 2
74 73 leidi 3 7 5 7 2 3 7 5 7 2
75 14 nnnn0i 3 0
76 nnexpcl 9 3 0 9 3
77 22 75 76 mp2an 9 3
78 77 nncni 9 3
79 70 nncni 5 7
80 78 79 mulcomi 9 3 5 7 = 5 7 9 3
81 7 nn0cni M
82 4 nn0cni N
83 81 82 addcomi M + N = N + M
84 8 83 eqtr3i 3 = N + M
85 84 oveq2i 9 3 = 9 N + M
86 22 nncni 9
87 expadd 9 N 0 M 0 9 N + M = 9 N 9 M
88 86 4 7 87 mp3an 9 N + M = 9 N 9 M
89 85 88 eqtri 9 3 = 9 N 9 M
90 89 oveq2i 5 7 9 3 = 5 7 9 N 9 M
91 36 nncni 9 N
92 nnexpcl 9 M 0 9 M
93 22 7 92 mp2an 9 M
94 93 nncni 9 M
95 79 91 94 mul12i 5 7 9 N 9 M = 9 N 5 7 9 M
96 80 90 95 3eqtri 9 3 5 7 = 9 N 5 7 9 M
97 9 oveq2i 9 N 5 7 9 M = 9 N 2 N + 1 F
98 96 97 eqtri 9 3 5 7 = 9 N 2 N + 1 F
99 98 oveq2i 3 9 3 5 7 = 3 9 N 2 N + 1 F
100 df-7 7 = 6 + 1
101 100 oveq2i 3 7 = 3 6 + 1
102 3cn 3
103 6nn0 6 0
104 expp1 3 6 0 3 6 + 1 = 3 6 3
105 102 103 104 mp2an 3 6 + 1 = 3 6 3
106 expmul 3 2 0 3 0 3 2 3 = 3 2 3
107 102 15 75 106 mp3an 3 2 3 = 3 2 3
108 59 102 mulcomi 2 3 = 3 2
109 3t2e6 3 2 = 6
110 108 109 eqtri 2 3 = 6
111 110 oveq2i 3 2 3 = 3 6
112 sq3 3 2 = 9
113 112 oveq1i 3 2 3 = 9 3
114 107 111 113 3eqtr3i 3 6 = 9 3
115 114 oveq1i 3 6 3 = 9 3 3
116 105 115 eqtri 3 6 + 1 = 9 3 3
117 78 102 mulcomi 9 3 3 = 3 9 3
118 101 116 117 3eqtri 3 7 = 3 9 3
119 118 oveq1i 3 7 5 7 = 3 9 3 5 7
120 102 78 79 mulassi 3 9 3 5 7 = 3 9 3 5 7
121 119 120 eqtri 3 7 5 7 = 3 9 3 5 7
122 33 nncni 2 N + 1
123 102 122 91 mul32i 3 2 N + 1 9 N = 3 9 N 2 N + 1
124 123 oveq1i 3 2 N + 1 9 N F = 3 9 N 2 N + 1 F
125 102 91 mulcli 3 9 N
126 125 122 61 mulassi 3 9 N 2 N + 1 F = 3 9 N 2 N + 1 F
127 122 61 mulcli 2 N + 1 F
128 102 91 127 mulassi 3 9 N 2 N + 1 F = 3 9 N 2 N + 1 F
129 124 126 128 3eqtri 3 2 N + 1 9 N F = 3 9 N 2 N + 1 F
130 99 121 129 3eqtr4i 3 7 5 7 = 3 2 N + 1 9 N F
131 130 oveq2i 2 3 7 5 7 = 2 3 2 N + 1 9 N F
132 68 nncni 3 7
133 132 79 mulcli 3 7 5 7
134 133 59 mulcomi 3 7 5 7 2 = 2 3 7 5 7
135 37 nncni 3 2 N + 1 9 N
136 135 59 61 mul12i 3 2 N + 1 9 N 2 F = 2 3 2 N + 1 9 N F
137 131 134 136 3eqtr4i 3 7 5 7 2 = 3 2 N + 1 9 N 2 F
138 74 137 breqtri 3 7 5 7 2 3 2 N + 1 9 N 2 F
139 1 30 15 37 38 39 58 64 138 log2ublem1 3 7 5 7 n = 0 N 2 3 2 n + 1 9 n 2 G