Metamath Proof Explorer


Theorem logbcl

Description: General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017)

Ref Expression
Assertion logbcl B 0 1 X 0 log B X

Proof

Step Hyp Ref Expression
1 logbval B 0 1 X 0 log B X = log X log B
2 eldifsn X 0 X X 0
3 logcl X X 0 log X
4 2 3 sylbi X 0 log X
5 4 adantl B 0 1 X 0 log X
6 eldifi B 0 1 B
7 eldifpr B 0 1 B B 0 B 1
8 7 simp2bi B 0 1 B 0
9 6 8 logcld B 0 1 log B
10 9 adantr B 0 1 X 0 log B
11 logccne0 B B 0 B 1 log B 0
12 7 11 sylbi B 0 1 log B 0
13 12 adantr B 0 1 X 0 log B 0
14 5 10 13 divcld B 0 1 X 0 log X log B
15 1 14 eqeltrd B 0 1 X 0 log B X