Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Logarithms to an arbitrary base
logbcl
Next ⟩
logbid1
Metamath Proof Explorer
Ascii
Unicode
Theorem
logbcl
Description:
General logarithm closure.
(Contributed by
David A. Wheeler
, 17-Jul-2017)
Ref
Expression
Assertion
logbcl
⊢
B
∈
ℂ
∖
0
1
∧
X
∈
ℂ
∖
0
→
log
B
X
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
logbval
⊢
B
∈
ℂ
∖
0
1
∧
X
∈
ℂ
∖
0
→
log
B
X
=
log
⁡
X
log
⁡
B
2
eldifsn
⊢
X
∈
ℂ
∖
0
↔
X
∈
ℂ
∧
X
≠
0
3
logcl
⊢
X
∈
ℂ
∧
X
≠
0
→
log
⁡
X
∈
ℂ
4
2
3
sylbi
⊢
X
∈
ℂ
∖
0
→
log
⁡
X
∈
ℂ
5
4
adantl
⊢
B
∈
ℂ
∖
0
1
∧
X
∈
ℂ
∖
0
→
log
⁡
X
∈
ℂ
6
eldifi
⊢
B
∈
ℂ
∖
0
1
→
B
∈
ℂ
7
eldifpr
⊢
B
∈
ℂ
∖
0
1
↔
B
∈
ℂ
∧
B
≠
0
∧
B
≠
1
8
7
simp2bi
⊢
B
∈
ℂ
∖
0
1
→
B
≠
0
9
6
8
logcld
⊢
B
∈
ℂ
∖
0
1
→
log
⁡
B
∈
ℂ
10
9
adantr
⊢
B
∈
ℂ
∖
0
1
∧
X
∈
ℂ
∖
0
→
log
⁡
B
∈
ℂ
11
logccne0
⊢
B
∈
ℂ
∧
B
≠
0
∧
B
≠
1
→
log
⁡
B
≠
0
12
7
11
sylbi
⊢
B
∈
ℂ
∖
0
1
→
log
⁡
B
≠
0
13
12
adantr
⊢
B
∈
ℂ
∖
0
1
∧
X
∈
ℂ
∖
0
→
log
⁡
B
≠
0
14
5
10
13
divcld
⊢
B
∈
ℂ
∖
0
1
∧
X
∈
ℂ
∖
0
→
log
⁡
X
log
⁡
B
∈
ℂ
15
1
14
eqeltrd
⊢
B
∈
ℂ
∖
0
1
∧
X
∈
ℂ
∖
0
→
log
B
X
∈
ℂ