Metamath Proof Explorer


Theorem logbf

Description: The general logarithm to a fixed base regarded as function. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion logbf B B 0 B 1 curry logb B : 0

Proof

Step Hyp Ref Expression
1 logbmpt B B 0 B 1 curry logb B = y 0 log y log B
2 eldifsn y 0 y y 0
3 logcl y y 0 log y
4 2 3 sylbi y 0 log y
5 4 adantl B B 0 B 1 y 0 log y
6 logcl B B 0 log B
7 6 3adant3 B B 0 B 1 log B
8 7 adantr B B 0 B 1 y 0 log B
9 logccne0 B B 0 B 1 log B 0
10 9 adantr B B 0 B 1 y 0 log B 0
11 5 8 10 divcld B B 0 B 1 y 0 log y log B
12 1 11 fmpt3d B B 0 B 1 curry logb B : 0