Metamath Proof Explorer


Theorem logbgt0b

Description: The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion logbgt0b A + B + 1 < B 0 < log B A 1 < A

Proof

Step Hyp Ref Expression
1 rpcn B + B
2 1 adantr B + 1 < B B
3 rpne0 B + B 0
4 3 adantr B + 1 < B B 0
5 1red B + 1
6 ltne 1 1 < B B 1
7 5 6 sylan B + 1 < B B 1
8 eldifpr B 0 1 B B 0 B 1
9 2 4 7 8 syl3anbrc B + 1 < B B 0 1
10 rpcndif0 A + A 0
11 logbval B 0 1 A 0 log B A = log A log B
12 9 10 11 syl2anr A + B + 1 < B log B A = log A log B
13 12 breq2d A + B + 1 < B 0 < log B A 0 < log A log B
14 relogcl A + log A
15 14 adantr A + B + 1 < B log A
16 relogcl B + log B
17 16 adantr B + 1 < B log B
18 17 adantl A + B + 1 < B log B
19 loggt0b B + 0 < log B 1 < B
20 19 biimpar B + 1 < B 0 < log B
21 20 adantl A + B + 1 < B 0 < log B
22 gt0div log A log B 0 < log B 0 < log A 0 < log A log B
23 15 18 21 22 syl3anc A + B + 1 < B 0 < log A 0 < log A log B
24 loggt0b A + 0 < log A 1 < A
25 24 adantr A + B + 1 < B 0 < log A 1 < A
26 13 23 25 3bitr2d A + B + 1 < B 0 < log B A 1 < A