Metamath Proof Explorer


Theorem logbid1

Description: General logarithm is 1 when base and arg match. Property 1(a) of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by David A. Wheeler, 22-Jul-2017)

Ref Expression
Assertion logbid1 A A 0 A 1 log A A = 1

Proof

Step Hyp Ref Expression
1 eldifpr A 0 1 A A 0 A 1
2 1 biimpri A A 0 A 1 A 0 1
3 eldifsn A 0 A A 0
4 3 biimpri A A 0 A 0
5 4 3adant3 A A 0 A 1 A 0
6 logbval A 0 1 A 0 log A A = log A log A
7 2 5 6 syl2anc A A 0 A 1 log A A = log A log A
8 logcl A A 0 log A
9 8 3adant3 A A 0 A 1 log A
10 logccne0 A A 0 A 1 log A 0
11 9 10 dividd A A 0 A 1 log A log A = 1
12 7 11 eqtrd A A 0 A 1 log A A = 1