Metamath Proof Explorer


Theorem logbleb

Description: The general logarithm function is monotone/increasing. See logleb . (Contributed by Stefan O'Rear, 19-Oct-2014) (Revised by AV, 31-May-2020)

Ref Expression
Assertion logbleb B 2 X + Y + X Y log B X log B Y

Proof

Step Hyp Ref Expression
1 simp2 B 2 X + Y + X +
2 1 relogcld B 2 X + Y + log X
3 simp3 B 2 X + Y + Y +
4 3 relogcld B 2 X + Y + log Y
5 eluzelre B 2 B
6 5 3ad2ant1 B 2 X + Y + B
7 1z 1
8 simp1 B 2 X + Y + B 2
9 1p1e2 1 + 1 = 2
10 9 fveq2i 1 + 1 = 2
11 8 10 eleqtrrdi B 2 X + Y + B 1 + 1
12 eluzp1l 1 B 1 + 1 1 < B
13 7 11 12 sylancr B 2 X + Y + 1 < B
14 6 13 rplogcld B 2 X + Y + log B +
15 2 4 14 lediv1d B 2 X + Y + log X log Y log X log B log Y log B
16 logleb X + Y + X Y log X log Y
17 16 3adant1 B 2 X + Y + X Y log X log Y
18 relogbval B 2 X + log B X = log X log B
19 18 3adant3 B 2 X + Y + log B X = log X log B
20 relogbval B 2 Y + log B Y = log Y log B
21 20 3adant2 B 2 X + Y + log B Y = log Y log B
22 19 21 breq12d B 2 X + Y + log B X log B Y log X log B log Y log B
23 15 17 22 3bitr4d B 2 X + Y + X Y log B X log B Y