Metamath Proof Explorer


Theorem logblog

Description: The general logarithm to the base being Euler's constant regarded as function is the natural logarithm. (Contributed by AV, 12-Jun-2020)

Ref Expression
Assertion logblog curry logb e = log

Proof

Step Hyp Ref Expression
1 loge log e = 1
2 1 a1i y 0 log e = 1
3 2 oveq2d y 0 log y log e = log y 1
4 eldifsn y 0 y y 0
5 logcl y y 0 log y
6 4 5 sylbi y 0 log y
7 6 div1d y 0 log y 1 = log y
8 3 7 eqtrd y 0 log y log e = log y
9 8 mpteq2ia y 0 log y log e = y 0 log y
10 ere e
11 10 recni e
12 ene0 e 0
13 ene1 e 1
14 logbmpt e e 0 e 1 curry logb e = y 0 log y log e
15 11 12 13 14 mp3an curry logb e = y 0 log y log e
16 logf1o log : 0 1-1 onto ran log
17 f1ofn log : 0 1-1 onto ran log log Fn 0
18 16 17 ax-mp log Fn 0
19 dffn5 log Fn 0 log = y 0 log y
20 18 19 mpbi log = y 0 log y
21 9 15 20 3eqtr4i curry logb e = log