Metamath Proof Explorer


Theorem logbprmirr

Description: The logarithm of a prime to a different prime base is an irrational number. For example, ( 2 logb 3 ) e. ( RR \ QQ ) (see 2logb3irr ). (Contributed by AV, 31-Dec-2022)

Ref Expression
Assertion logbprmirr X B X B log B X

Proof

Step Hyp Ref Expression
1 prmuz2 X X 2
2 1 3ad2ant1 X B X B X 2
3 prmuz2 B B 2
4 3 3ad2ant2 X B X B B 2
5 prmrp X B X gcd B = 1 X B
6 5 biimp3ar X B X B X gcd B = 1
7 logbgcd1irr X 2 B 2 X gcd B = 1 log B X
8 2 4 6 7 syl3anc X B X B log B X