Metamath Proof Explorer


Theorem logbrec

Description: Logarithm of a reciprocal changes sign. See logrec . Particular case of Property 3 of Cohen4 p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion logbrec B2A+logB1A=logBA

Proof

Step Hyp Ref Expression
1 simpr B2A+A+
2 1 rpreccld B2A+1A+
3 relogbval B21A+logB1A=log1AlogB
4 2 3 syldan B2A+logB1A=log1AlogB
5 relogbval B2A+logBA=logAlogB
6 5 negeqd B2A+logBA=logAlogB
7 1 rpcnd B2A+A
8 1 rpne0d B2A+A0
9 7 8 logcld B2A+logA
10 zgt1rpn0n1 B2B+B0B1
11 10 simp1d B2B+
12 11 adantr B2A+B+
13 12 relogcld B2A+logB
14 13 recnd B2A+logB
15 10 simp3d B2B1
16 15 adantr B2A+B1
17 logne0 B+B1logB0
18 12 16 17 syl2anc B2A+logB0
19 9 14 18 divnegd B2A+logAlogB=logAlogB
20 7 8 reccld B2A+1A
21 7 8 recne0d B2A+1A0
22 20 21 logcld B2A+log1A
23 1 relogcld B2A+logA
24 23 reim0d B2A+logA=0
25 0re 0
26 pipos 0<π
27 25 26 gtneii π0
28 27 a1i B2A+π0
29 28 necomd B2A+0π
30 24 29 eqnetrd B2A+logAπ
31 logrec AA0logAπlogA=log1A
32 7 8 30 31 syl3anc B2A+logA=log1A
33 32 eqcomd B2A+log1A=logA
34 22 33 negcon1ad B2A+logA=log1A
35 34 oveq1d B2A+logAlogB=log1AlogB
36 6 19 35 3eqtrd B2A+logBA=log1AlogB
37 4 36 eqtr4d B2A+logB1A=logBA