Metamath Proof Explorer


Theorem logccne0d

Description: The logarithm isn't 0 if its argument isn't 0 or 1, deduction form. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses logccne0d.a φ A
logccne0d.0 φ A 0
logccne0d.1 φ A 1
Assertion logccne0d φ log A 0

Proof

Step Hyp Ref Expression
1 logccne0d.a φ A
2 logccne0d.0 φ A 0
3 logccne0d.1 φ A 1
4 logccne0 A A 0 A 1 log A 0
5 1 2 3 4 syl3anc φ log A 0