| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
|
im0 |
|
| 3 |
1 2
|
eqtrdi |
|
| 4 |
3
|
necon3i |
|
| 5 |
|
logcl |
|
| 6 |
4 5
|
sylan2 |
|
| 7 |
|
efcj |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
eflog |
|
| 10 |
4 9
|
sylan2 |
|
| 11 |
10
|
fveq2d |
|
| 12 |
8 11
|
eqtrd |
|
| 13 |
|
cjcl |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
15 4
|
syl |
|
| 17 |
|
cjne0 |
|
| 18 |
17
|
adantr |
|
| 19 |
16 18
|
mpbid |
|
| 20 |
6
|
cjcld |
|
| 21 |
6
|
imcld |
|
| 22 |
|
pire |
|
| 23 |
22
|
a1i |
|
| 24 |
|
logimcl |
|
| 25 |
4 24
|
sylan2 |
|
| 26 |
25
|
simprd |
|
| 27 |
|
rpre |
|
| 28 |
27
|
renegcld |
|
| 29 |
|
negneg |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
eleq1d |
|
| 32 |
28 31
|
imbitrid |
|
| 33 |
|
lognegb |
|
| 34 |
4 33
|
sylan2 |
|
| 35 |
|
reim0b |
|
| 36 |
35
|
adantr |
|
| 37 |
32 34 36
|
3imtr3d |
|
| 38 |
37
|
necon3d |
|
| 39 |
15 38
|
mpd |
|
| 40 |
39
|
necomd |
|
| 41 |
21 23 26 40
|
leneltd |
|
| 42 |
|
ltneg |
|
| 43 |
21 22 42
|
sylancl |
|
| 44 |
41 43
|
mpbid |
|
| 45 |
6
|
imcjd |
|
| 46 |
44 45
|
breqtrrd |
|
| 47 |
25
|
simpld |
|
| 48 |
22
|
renegcli |
|
| 49 |
|
ltle |
|
| 50 |
48 21 49
|
sylancr |
|
| 51 |
47 50
|
mpd |
|
| 52 |
|
lenegcon1 |
|
| 53 |
22 21 52
|
sylancr |
|
| 54 |
51 53
|
mpbid |
|
| 55 |
45 54
|
eqbrtrd |
|
| 56 |
|
ellogrn |
|
| 57 |
20 46 55 56
|
syl3anbrc |
|
| 58 |
|
logeftb |
|
| 59 |
14 19 57 58
|
syl3anc |
|
| 60 |
12 59
|
mpbird |
|