| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logcn.d |  | 
						
							| 2 |  | logcnlem.s |  | 
						
							| 3 |  | logcnlem.t |  | 
						
							| 4 |  | logcnlem.a |  | 
						
							| 5 |  | logcnlem.r |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 1 | ellogdm |  | 
						
							| 8 | 7 | simplbi |  | 
						
							| 9 | 4 8 | syl |  | 
						
							| 10 | 9 | imcld |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 11 | recnd |  | 
						
							| 13 |  | reim0b |  | 
						
							| 14 | 9 13 | syl |  | 
						
							| 15 | 7 | simprbi |  | 
						
							| 16 | 4 15 | syl |  | 
						
							| 17 | 14 16 | sylbird |  | 
						
							| 18 | 17 | necon3bd |  | 
						
							| 19 | 18 | imp |  | 
						
							| 20 | 12 19 | absrpcld |  | 
						
							| 21 | 6 20 | ifclda |  | 
						
							| 22 | 2 21 | eqeltrid |  | 
						
							| 23 | 1 | logdmn0 |  | 
						
							| 24 | 4 23 | syl |  | 
						
							| 25 | 9 24 | absrpcld |  | 
						
							| 26 |  | 1rp |  | 
						
							| 27 |  | rpaddcl |  | 
						
							| 28 | 26 5 27 | sylancr |  | 
						
							| 29 | 5 28 | rpdivcld |  | 
						
							| 30 | 25 29 | rpmulcld |  | 
						
							| 31 | 3 30 | eqeltrid |  | 
						
							| 32 | 22 31 | ifcld |  |