Metamath Proof Explorer


Theorem logcnlem2

Description: Lemma for logcn . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Hypotheses logcn.d D = −∞ 0
logcnlem.s S = if A + A A
logcnlem.t T = A R 1 + R
logcnlem.a φ A D
logcnlem.r φ R +
Assertion logcnlem2 φ if S T S T +

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 logcnlem.s S = if A + A A
3 logcnlem.t T = A R 1 + R
4 logcnlem.a φ A D
5 logcnlem.r φ R +
6 simpr φ A + A +
7 1 ellogdm A D A A A +
8 7 simplbi A D A
9 4 8 syl φ A
10 9 imcld φ A
11 10 adantr φ ¬ A + A
12 11 recnd φ ¬ A + A
13 reim0b A A A = 0
14 9 13 syl φ A A = 0
15 7 simprbi A D A A +
16 4 15 syl φ A A +
17 14 16 sylbird φ A = 0 A +
18 17 necon3bd φ ¬ A + A 0
19 18 imp φ ¬ A + A 0
20 12 19 absrpcld φ ¬ A + A +
21 6 20 ifclda φ if A + A A +
22 2 21 eqeltrid φ S +
23 1 logdmn0 A D A 0
24 4 23 syl φ A 0
25 9 24 absrpcld φ A +
26 1rp 1 +
27 rpaddcl 1 + R + 1 + R +
28 26 5 27 sylancr φ 1 + R +
29 5 28 rpdivcld φ R 1 + R +
30 25 29 rpmulcld φ A R 1 + R +
31 3 30 eqeltrid φ T +
32 22 31 ifcld φ if S T S T +