Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
|
2 |
|
logcnlem.s |
|
3 |
|
logcnlem.t |
|
4 |
|
logcnlem.a |
|
5 |
|
logcnlem.r |
|
6 |
|
simpr |
|
7 |
1
|
ellogdm |
|
8 |
7
|
simplbi |
|
9 |
4 8
|
syl |
|
10 |
9
|
imcld |
|
11 |
10
|
adantr |
|
12 |
11
|
recnd |
|
13 |
|
reim0b |
|
14 |
9 13
|
syl |
|
15 |
7
|
simprbi |
|
16 |
4 15
|
syl |
|
17 |
14 16
|
sylbird |
|
18 |
17
|
necon3bd |
|
19 |
18
|
imp |
|
20 |
12 19
|
absrpcld |
|
21 |
6 20
|
ifclda |
|
22 |
2 21
|
eqeltrid |
|
23 |
1
|
logdmn0 |
|
24 |
4 23
|
syl |
|
25 |
9 24
|
absrpcld |
|
26 |
|
1rp |
|
27 |
|
rpaddcl |
|
28 |
26 5 27
|
sylancr |
|
29 |
5 28
|
rpdivcld |
|
30 |
25 29
|
rpmulcld |
|
31 |
3 30
|
eqeltrid |
|
32 |
22 31
|
ifcld |
|