Metamath Proof Explorer


Theorem logcnlem3

Description: Lemma for logcn . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Hypotheses logcn.d D = −∞ 0
logcnlem.s S = if A + A A
logcnlem.t T = A R 1 + R
logcnlem.a φ A D
logcnlem.r φ R +
logcnlem.b φ B D
logcnlem.l φ A B < if S T S T
Assertion logcnlem3 φ π < log B log A log B log A π

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 logcnlem.s S = if A + A A
3 logcnlem.t T = A R 1 + R
4 logcnlem.a φ A D
5 logcnlem.r φ R +
6 logcnlem.b φ B D
7 logcnlem.l φ A B < if S T S T
8 pire π
9 8 renegcli π
10 9 a1i φ A < 0 π
11 1 ellogdm B D B B B +
12 11 simplbi B D B
13 6 12 syl φ B
14 1 logdmn0 B D B 0
15 6 14 syl φ B 0
16 13 15 logcld φ log B
17 16 imcld φ log B
18 17 adantr φ A < 0 log B
19 1 ellogdm A D A A A +
20 19 simplbi A D A
21 4 20 syl φ A
22 1 logdmn0 A D A 0
23 4 22 syl φ A 0
24 21 23 logcld φ log A
25 24 imcld φ log A
26 17 25 resubcld φ log B log A
27 26 adantr φ A < 0 log B log A
28 13 15 logimcld φ π < log B log B π
29 28 simpld φ π < log B
30 29 adantr φ A < 0 π < log B
31 17 recnd φ log B
32 31 adantr φ A < 0 log B
33 32 subid1d φ A < 0 log B 0 = log B
34 25 adantr φ A < 0 log A
35 0red φ A < 0 0
36 argimlt0 A A < 0 log A π 0
37 21 36 sylan φ A < 0 log A π 0
38 eliooord log A π 0 π < log A log A < 0
39 37 38 syl φ A < 0 π < log A log A < 0
40 39 simprd φ A < 0 log A < 0
41 34 35 18 40 ltsub2dd φ A < 0 log B 0 < log B log A
42 33 41 eqbrtrrd φ A < 0 log B < log B log A
43 10 18 27 30 42 lttrd φ A < 0 π < log B log A
44 29 adantr φ A = 0 π < log B
45 reim0b A A A = 0
46 21 45 syl φ A A = 0
47 19 simprbi A D A A +
48 4 47 syl φ A A +
49 46 48 sylbird φ A = 0 A +
50 49 imp φ A = 0 A +
51 50 relogcld φ A = 0 log A
52 51 reim0d φ A = 0 log A = 0
53 52 oveq2d φ A = 0 log B log A = log B 0
54 31 subid1d φ log B 0 = log B
55 54 adantr φ A = 0 log B 0 = log B
56 53 55 eqtrd φ A = 0 log B log A = log B
57 44 56 breqtrrd φ A = 0 π < log B log A
58 9 a1i φ 0 < A π
59 25 renegcld φ log A
60 59 adantr φ 0 < A log A
61 26 adantr φ 0 < A log B log A
62 argimgt0 A 0 < A log A 0 π
63 21 62 sylan φ 0 < A log A 0 π
64 eliooord log A 0 π 0 < log A log A < π
65 63 64 syl φ 0 < A 0 < log A log A < π
66 65 simprd φ 0 < A log A < π
67 ltneg log A π log A < π π < log A
68 25 8 67 sylancl φ log A < π π < log A
69 68 adantr φ 0 < A log A < π π < log A
70 66 69 mpbid φ 0 < A π < log A
71 df-neg log A = 0 log A
72 13 adantr φ 0 < A B
73 21 13 imsubd φ A B = A B
74 73 adantr φ 0 < A A B = A B
75 21 13 subcld φ A B
76 75 imcld φ A B
77 76 adantr φ 0 < A A B
78 75 abscld φ A B
79 78 adantr φ 0 < A A B
80 21 adantr φ 0 < A A
81 80 imcld φ 0 < A A
82 absimle A B A B A B
83 75 82 syl φ A B A B
84 76 78 absled φ A B A B A B A B A B A B
85 83 84 mpbid φ A B A B A B A B
86 85 simprd φ A B A B
87 86 adantr φ 0 < A A B A B
88 rpre A + A
89 88 adantl φ A + A
90 21 imcld φ A
91 90 recnd φ A
92 91 abscld φ A
93 92 adantr φ ¬ A + A
94 89 93 ifclda φ if A + A A
95 2 94 eqeltrid φ S
96 21 abscld φ A
97 5 rpred φ R
98 1rp 1 +
99 rpaddcl 1 + R + 1 + R +
100 98 5 99 sylancr φ 1 + R +
101 97 100 rerpdivcld φ R 1 + R
102 96 101 remulcld φ A R 1 + R
103 3 102 eqeltrid φ T
104 95 103 ifcld φ if S T S T
105 min1 S T if S T S T S
106 95 103 105 syl2anc φ if S T S T S
107 78 104 95 7 106 ltletrd φ A B < S
108 107 adantr φ 0 < A A B < S
109 gt0ne0 A 0 < A A 0
110 90 109 sylan φ 0 < A A 0
111 88 46 syl5ib φ A + A = 0
112 111 necon3ad φ A 0 ¬ A +
113 112 imp φ A 0 ¬ A +
114 iffalse ¬ A + if A + A A = A
115 2 114 eqtrid ¬ A + S = A
116 113 115 syl φ A 0 S = A
117 110 116 syldan φ 0 < A S = A
118 0re 0
119 ltle 0 A 0 < A 0 A
120 118 90 119 sylancr φ 0 < A 0 A
121 120 imp φ 0 < A 0 A
122 81 121 absidd φ 0 < A A = A
123 117 122 eqtrd φ 0 < A S = A
124 108 123 breqtrd φ 0 < A A B < A
125 77 79 81 87 124 lelttrd φ 0 < A A B < A
126 74 125 eqbrtrrd φ 0 < A A B < A
127 91 adantr φ 0 < A A
128 127 subid1d φ 0 < A A 0 = A
129 126 128 breqtrrd φ 0 < A A B < A 0
130 0red φ 0
131 13 imcld φ B
132 130 131 90 ltsub2d φ 0 < B A B < A 0
133 132 adantr φ 0 < A 0 < B A B < A 0
134 129 133 mpbird φ 0 < A 0 < B
135 argimgt0 B 0 < B log B 0 π
136 72 134 135 syl2anc φ 0 < A log B 0 π
137 eliooord log B 0 π 0 < log B log B < π
138 136 137 syl φ 0 < A 0 < log B log B < π
139 138 simpld φ 0 < A 0 < log B
140 130 17 25 ltsub1d φ 0 < log B 0 log A < log B log A
141 140 adantr φ 0 < A 0 < log B 0 log A < log B log A
142 139 141 mpbid φ 0 < A 0 log A < log B log A
143 71 142 eqbrtrid φ 0 < A log A < log B log A
144 58 60 61 70 143 lttrd φ 0 < A π < log B log A
145 lttri4 A 0 A < 0 A = 0 0 < A
146 90 118 145 sylancl φ A < 0 A = 0 0 < A
147 43 57 144 146 mpjao3dan φ π < log B log A
148 8 a1i φ A < 0 π
149 34 renegcld φ A < 0 log A
150 13 adantr φ A < 0 B
151 91 adantr φ A < 0 A
152 151 subid1d φ A < 0 A 0 = A
153 90 adantr φ A < 0 A
154 78 renegcld φ A B
155 154 adantr φ A < 0 A B
156 76 adantr φ A < 0 A B
157 78 adantr φ A < 0 A B
158 107 adantr φ A < 0 A B < S
159 118 ltnri ¬ 0 < 0
160 breq1 A = 0 A < 0 0 < 0
161 159 160 mtbiri A = 0 ¬ A < 0
162 161 necon2ai A < 0 A 0
163 162 116 sylan2 φ A < 0 S = A
164 ltle A 0 A < 0 A 0
165 90 118 164 sylancl φ A < 0 A 0
166 165 imp φ A < 0 A 0
167 153 166 absnidd φ A < 0 A = A
168 163 167 eqtrd φ A < 0 S = A
169 158 168 breqtrd φ A < 0 A B < A
170 157 153 169 ltnegcon2d φ A < 0 A < A B
171 85 simpld φ A B A B
172 171 adantr φ A < 0 A B A B
173 153 155 156 170 172 ltletrd φ A < 0 A < A B
174 73 adantr φ A < 0 A B = A B
175 173 174 breqtrd φ A < 0 A < A B
176 152 175 eqbrtrd φ A < 0 A 0 < A B
177 150 imcld φ A < 0 B
178 177 35 153 ltsub2d φ A < 0 B < 0 A 0 < A B
179 176 178 mpbird φ A < 0 B < 0
180 argimlt0 B B < 0 log B π 0
181 150 179 180 syl2anc φ A < 0 log B π 0
182 eliooord log B π 0 π < log B log B < 0
183 181 182 syl φ A < 0 π < log B log B < 0
184 183 simprd φ A < 0 log B < 0
185 18 35 34 184 ltsub1dd φ A < 0 log B log A < 0 log A
186 185 71 breqtrrdi φ A < 0 log B log A < log A
187 39 simpld φ A < 0 π < log A
188 ltnegcon1 π log A π < log A log A < π
189 8 34 188 sylancr φ A < 0 π < log A log A < π
190 187 189 mpbid φ A < 0 log A < π
191 27 149 148 186 190 lttrd φ A < 0 log B log A < π
192 27 148 191 ltled φ A < 0 log B log A π
193 28 simprd φ log B π
194 193 adantr φ A = 0 log B π
195 56 194 eqbrtrd φ A = 0 log B log A π
196 8 a1i φ 0 < A π
197 17 adantr φ 0 < A log B
198 0red φ 0 < A 0
199 25 adantr φ 0 < A log A
200 65 simpld φ 0 < A 0 < log A
201 198 199 197 200 ltsub2dd φ 0 < A log B log A < log B 0
202 31 adantr φ 0 < A log B
203 202 subid1d φ 0 < A log B 0 = log B
204 201 203 breqtrd φ 0 < A log B log A < log B
205 138 simprd φ 0 < A log B < π
206 61 197 196 204 205 lttrd φ 0 < A log B log A < π
207 61 196 206 ltled φ 0 < A log B log A π
208 192 195 207 146 mpjao3dan φ log B log A π
209 147 208 jca φ π < log B log A log B log A π