Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
|
2 |
|
logcnlem.s |
|
3 |
|
logcnlem.t |
|
4 |
|
logcnlem.a |
|
5 |
|
logcnlem.r |
|
6 |
|
logcnlem.b |
|
7 |
|
logcnlem.l |
|
8 |
1
|
ellogdm |
|
9 |
8
|
simplbi |
|
10 |
4 9
|
syl |
|
11 |
1
|
logdmn0 |
|
12 |
4 11
|
syl |
|
13 |
10 12
|
logcld |
|
14 |
13
|
imcld |
|
15 |
14
|
recnd |
|
16 |
1
|
ellogdm |
|
17 |
16
|
simplbi |
|
18 |
6 17
|
syl |
|
19 |
1
|
logdmn0 |
|
20 |
6 19
|
syl |
|
21 |
18 20
|
logcld |
|
22 |
21
|
imcld |
|
23 |
22
|
recnd |
|
24 |
15 23
|
abssubd |
|
25 |
21 13
|
imsubd |
|
26 |
|
efsub |
|
27 |
21 13 26
|
syl2anc |
|
28 |
|
eflog |
|
29 |
18 20 28
|
syl2anc |
|
30 |
|
eflog |
|
31 |
10 12 30
|
syl2anc |
|
32 |
29 31
|
oveq12d |
|
33 |
27 32
|
eqtrd |
|
34 |
18 10 12
|
divcld |
|
35 |
18 10 20 12
|
divne0d |
|
36 |
21 13
|
subcld |
|
37 |
1 2 3 4 5 6 7
|
logcnlem3 |
|
38 |
37
|
simpld |
|
39 |
38 25
|
breqtrrd |
|
40 |
37
|
simprd |
|
41 |
25 40
|
eqbrtrd |
|
42 |
|
ellogrn |
|
43 |
36 39 41 42
|
syl3anbrc |
|
44 |
|
logeftb |
|
45 |
34 35 43 44
|
syl3anc |
|
46 |
33 45
|
mpbird |
|
47 |
46
|
eqcomd |
|
48 |
47
|
fveq2d |
|
49 |
25 48
|
eqtr3d |
|
50 |
49
|
fveq2d |
|
51 |
24 50
|
eqtrd |
|
52 |
34 35
|
logcld |
|
53 |
52
|
imcld |
|
54 |
53
|
recnd |
|
55 |
54
|
abscld |
|
56 |
|
0red |
|
57 |
|
1re |
|
58 |
10 18
|
subcld |
|
59 |
58
|
abscld |
|
60 |
10 12
|
absrpcld |
|
61 |
59 60
|
rerpdivcld |
|
62 |
|
resubcl |
|
63 |
57 61 62
|
sylancr |
|
64 |
34
|
recld |
|
65 |
10
|
abscld |
|
66 |
5
|
rpred |
|
67 |
|
1rp |
|
68 |
|
rpaddcl |
|
69 |
67 5 68
|
sylancr |
|
70 |
66 69
|
rerpdivcld |
|
71 |
65 70
|
remulcld |
|
72 |
3 71
|
eqeltrid |
|
73 |
|
rpre |
|
74 |
73
|
adantl |
|
75 |
10
|
imcld |
|
76 |
75
|
recnd |
|
77 |
76
|
abscld |
|
78 |
77
|
adantr |
|
79 |
74 78
|
ifclda |
|
80 |
2 79
|
eqeltrid |
|
81 |
|
ltmin |
|
82 |
59 80 72 81
|
syl3anc |
|
83 |
7 82
|
mpbid |
|
84 |
83
|
simprd |
|
85 |
69
|
rpred |
|
86 |
66
|
ltp1d |
|
87 |
66
|
recnd |
|
88 |
|
ax-1cn |
|
89 |
|
addcom |
|
90 |
87 88 89
|
sylancl |
|
91 |
86 90
|
breqtrd |
|
92 |
66 85 91
|
ltled |
|
93 |
85
|
recnd |
|
94 |
93
|
mulid1d |
|
95 |
92 94
|
breqtrrd |
|
96 |
57
|
a1i |
|
97 |
66 96 69
|
ledivmuld |
|
98 |
95 97
|
mpbird |
|
99 |
70 96 60
|
lemul2d |
|
100 |
98 99
|
mpbid |
|
101 |
65
|
recnd |
|
102 |
101
|
mulid1d |
|
103 |
100 102
|
breqtrd |
|
104 |
3 103
|
eqbrtrid |
|
105 |
59 72 65 84 104
|
ltletrd |
|
106 |
105 102
|
breqtrrd |
|
107 |
59 96 60
|
ltdivmuld |
|
108 |
106 107
|
mpbird |
|
109 |
|
posdif |
|
110 |
61 57 109
|
sylancl |
|
111 |
108 110
|
mpbid |
|
112 |
58 10 12
|
divcld |
|
113 |
112
|
releabsd |
|
114 |
10 18 10 12
|
divsubdird |
|
115 |
10 12
|
dividd |
|
116 |
115
|
oveq1d |
|
117 |
114 116
|
eqtrd |
|
118 |
117
|
fveq2d |
|
119 |
|
resub |
|
120 |
88 34 119
|
sylancr |
|
121 |
118 120
|
eqtrd |
|
122 |
|
re1 |
|
123 |
122
|
oveq1i |
|
124 |
121 123
|
eqtrdi |
|
125 |
58 10 12
|
absdivd |
|
126 |
113 124 125
|
3brtr3d |
|
127 |
96 64 61 126
|
subled |
|
128 |
56 63 64 111 127
|
ltletrd |
|
129 |
|
argregt0 |
|
130 |
34 128 129
|
syl2anc |
|
131 |
|
cosq14gt0 |
|
132 |
130 131
|
syl |
|
133 |
132
|
gt0ne0d |
|
134 |
53 133
|
retancld |
|
135 |
134
|
recnd |
|
136 |
135
|
abscld |
|
137 |
|
tanabsge |
|
138 |
130 137
|
syl |
|
139 |
128
|
gt0ne0d |
|
140 |
|
tanarg |
|
141 |
34 139 140
|
syl2anc |
|
142 |
141
|
fveq2d |
|
143 |
34
|
imcld |
|
144 |
143
|
recnd |
|
145 |
64
|
recnd |
|
146 |
144 145 139
|
absdivd |
|
147 |
56 64 128
|
ltled |
|
148 |
64 147
|
absidd |
|
149 |
148
|
oveq2d |
|
150 |
142 146 149
|
3eqtrd |
|
151 |
144
|
abscld |
|
152 |
64 66
|
remulcld |
|
153 |
18 10
|
subcld |
|
154 |
153 10 12
|
divcld |
|
155 |
|
absimle |
|
156 |
154 155
|
syl |
|
157 |
18 10 10 12
|
divsubdird |
|
158 |
115
|
oveq2d |
|
159 |
157 158
|
eqtrd |
|
160 |
159
|
fveq2d |
|
161 |
|
imsub |
|
162 |
34 88 161
|
sylancl |
|
163 |
|
im1 |
|
164 |
163
|
oveq2i |
|
165 |
162 164
|
eqtrdi |
|
166 |
144
|
subid1d |
|
167 |
160 165 166
|
3eqtrrd |
|
168 |
167
|
fveq2d |
|
169 |
10 18
|
abssubd |
|
170 |
169
|
oveq1d |
|
171 |
153 10 12
|
absdivd |
|
172 |
170 171
|
eqtr4d |
|
173 |
156 168 172
|
3brtr4d |
|
174 |
65 59
|
resubcld |
|
175 |
174 66
|
remulcld |
|
176 |
65 152
|
remulcld |
|
177 |
59
|
recnd |
|
178 |
88
|
a1i |
|
179 |
177 178 87
|
adddid |
|
180 |
177
|
mulid1d |
|
181 |
180
|
oveq1d |
|
182 |
179 181
|
eqtrd |
|
183 |
69
|
rpne0d |
|
184 |
101 87 93 183
|
divassd |
|
185 |
184 3
|
eqtr4di |
|
186 |
84 185
|
breqtrrd |
|
187 |
65 66
|
remulcld |
|
188 |
59 187 69
|
ltmuldivd |
|
189 |
186 188
|
mpbird |
|
190 |
182 189
|
eqbrtrrd |
|
191 |
59 66
|
remulcld |
|
192 |
59 191 187
|
ltaddsubd |
|
193 |
190 192
|
mpbid |
|
194 |
101 177 87
|
subdird |
|
195 |
193 194
|
breqtrrd |
|
196 |
60
|
rpne0d |
|
197 |
101 177 101 196
|
divsubdird |
|
198 |
101 196
|
dividd |
|
199 |
198
|
oveq1d |
|
200 |
197 199
|
eqtrd |
|
201 |
200 127
|
eqbrtrd |
|
202 |
174 64 60
|
ledivmuld |
|
203 |
201 202
|
mpbid |
|
204 |
65 64
|
remulcld |
|
205 |
174 204 5
|
lemul1d |
|
206 |
203 205
|
mpbid |
|
207 |
101 145 87
|
mulassd |
|
208 |
206 207
|
breqtrd |
|
209 |
59 175 176 195 208
|
ltletrd |
|
210 |
59 152 60
|
ltdivmuld |
|
211 |
209 210
|
mpbird |
|
212 |
151 61 152 173 211
|
lelttrd |
|
213 |
|
ltdivmul |
|
214 |
151 66 64 128 213
|
syl112anc |
|
215 |
212 214
|
mpbird |
|
216 |
150 215
|
eqbrtrd |
|
217 |
55 136 66 138 216
|
lelttrd |
|
218 |
51 217
|
eqbrtrd |
|