Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
logcxp
Next ⟩
cxp0
Metamath Proof Explorer
Ascii
Unicode
Theorem
logcxp
Description:
Logarithm of a complex power.
(Contributed by
Mario Carneiro
, 2-Aug-2014)
Ref
Expression
Assertion
logcxp
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
log
⁡
A
B
=
B
⁢
log
⁡
A
Proof
Step
Hyp
Ref
Expression
1
rpcn
⊢
A
∈
ℝ
+
→
A
∈
ℂ
2
1
adantr
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
A
∈
ℂ
3
rpne0
⊢
A
∈
ℝ
+
→
A
≠
0
4
3
adantr
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
A
≠
0
5
simpr
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
B
∈
ℝ
6
5
recnd
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
B
∈
ℂ
7
cxpef
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
→
A
B
=
e
B
⁢
log
⁡
A
8
2
4
6
7
syl3anc
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
A
B
=
e
B
⁢
log
⁡
A
9
8
fveq2d
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
log
⁡
A
B
=
log
⁡
e
B
⁢
log
⁡
A
10
id
⊢
B
∈
ℝ
→
B
∈
ℝ
11
relogcl
⊢
A
∈
ℝ
+
→
log
⁡
A
∈
ℝ
12
remulcl
⊢
B
∈
ℝ
∧
log
⁡
A
∈
ℝ
→
B
⁢
log
⁡
A
∈
ℝ
13
10
11
12
syl2anr
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
B
⁢
log
⁡
A
∈
ℝ
14
13
relogefd
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
log
⁡
e
B
⁢
log
⁡
A
=
B
⁢
log
⁡
A
15
9
14
eqtrd
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
→
log
⁡
A
B
=
B
⁢
log
⁡
A