Metamath Proof Explorer


Theorem logcxp

Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion logcxp A + B log A B = B log A

Proof

Step Hyp Ref Expression
1 rpcn A + A
2 1 adantr A + B A
3 rpne0 A + A 0
4 3 adantr A + B A 0
5 simpr A + B B
6 5 recnd A + B B
7 cxpef A A 0 B A B = e B log A
8 2 4 6 7 syl3anc A + B A B = e B log A
9 8 fveq2d A + B log A B = log e B log A
10 id B B
11 relogcl A + log A
12 remulcl B log A B log A
13 10 11 12 syl2anr A + B B log A
14 13 relogefd A + B log e B log A = B log A
15 9 14 eqtrd A + B log A B = B log A