Metamath Proof Explorer


Theorem logcxpd

Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 φ A +
rpcxpcld.2 φ B
Assertion logcxpd φ log A B = B log A

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 φ A +
2 rpcxpcld.2 φ B
3 logcxp A + B log A B = B log A
4 1 2 3 syl2anc φ log A B = B log A