Metamath Proof Explorer


Theorem logdifbnd

Description: Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion logdifbnd A + log A + 1 log A 1 A

Proof

Step Hyp Ref Expression
1 rpcn A + A
2 1cnd A + 1
3 rpne0 A + A 0
4 1 2 1 3 divdird A + A + 1 A = A A + 1 A
5 1 3 dividd A + A A = 1
6 5 oveq1d A + A A + 1 A = 1 + 1 A
7 4 6 eqtr2d A + 1 + 1 A = A + 1 A
8 7 fveq2d A + log 1 + 1 A = log A + 1 A
9 1rp 1 +
10 rpaddcl A + 1 + A + 1 +
11 9 10 mpan2 A + A + 1 +
12 relogdiv A + 1 + A + log A + 1 A = log A + 1 log A
13 11 12 mpancom A + log A + 1 A = log A + 1 log A
14 8 13 eqtrd A + log 1 + 1 A = log A + 1 log A
15 rpreccl A + 1 A +
16 rpaddcl 1 + 1 A + 1 + 1 A +
17 9 15 16 sylancr A + 1 + 1 A +
18 17 reeflogd A + e log 1 + 1 A = 1 + 1 A
19 17 rpred A + 1 + 1 A
20 15 rpred A + 1 A
21 20 reefcld A + e 1 A
22 efgt1p 1 A + 1 + 1 A < e 1 A
23 15 22 syl A + 1 + 1 A < e 1 A
24 19 21 23 ltled A + 1 + 1 A e 1 A
25 18 24 eqbrtrd A + e log 1 + 1 A e 1 A
26 relogcl A + 1 + log A + 1
27 11 26 syl A + log A + 1
28 relogcl A + log A
29 27 28 resubcld A + log A + 1 log A
30 14 29 eqeltrd A + log 1 + 1 A
31 efle log 1 + 1 A 1 A log 1 + 1 A 1 A e log 1 + 1 A e 1 A
32 30 20 31 syl2anc A + log 1 + 1 A 1 A e log 1 + 1 A e 1 A
33 25 32 mpbird A + log 1 + 1 A 1 A
34 14 33 eqbrtrrd A + log A + 1 log A 1 A