Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
|
2 |
|
rpge0 |
|
3 |
1 2
|
ge0p1rpd |
|
4 |
3
|
rprecred |
|
5 |
|
1red |
|
6 |
|
0le1 |
|
7 |
6
|
a1i |
|
8 |
5 3 7
|
divge0d |
|
9 |
|
id |
|
10 |
5 9
|
ltaddrp2d |
|
11 |
1 5
|
readdcld |
|
12 |
11
|
recnd |
|
13 |
12
|
mulid1d |
|
14 |
10 13
|
breqtrrd |
|
15 |
5 5 3
|
ltdivmuld |
|
16 |
14 15
|
mpbird |
|
17 |
4 8 16
|
eflegeo |
|
18 |
5
|
recnd |
|
19 |
3
|
rpne0d |
|
20 |
12 18 12 19
|
divsubdird |
|
21 |
1
|
recnd |
|
22 |
21 18
|
pncand |
|
23 |
22
|
oveq1d |
|
24 |
12 19
|
dividd |
|
25 |
24
|
oveq1d |
|
26 |
20 23 25
|
3eqtr3rd |
|
27 |
26
|
oveq2d |
|
28 |
|
rpne0 |
|
29 |
21 12 28 19
|
recdivd |
|
30 |
27 29
|
eqtrd |
|
31 |
17 30
|
breqtrd |
|
32 |
4
|
rpefcld |
|
33 |
3 9
|
rpdivcld |
|
34 |
32 33
|
logled |
|
35 |
31 34
|
mpbid |
|
36 |
4
|
relogefd |
|
37 |
3 9
|
relogdivd |
|
38 |
35 36 37
|
3brtr3d |
|