Metamath Proof Explorer


Theorem logdiflbnd

Description: Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Assertion logdiflbnd A + 1 A + 1 log A + 1 log A

Proof

Step Hyp Ref Expression
1 rpre A + A
2 rpge0 A + 0 A
3 1 2 ge0p1rpd A + A + 1 +
4 3 rprecred A + 1 A + 1
5 1red A + 1
6 0le1 0 1
7 6 a1i A + 0 1
8 5 3 7 divge0d A + 0 1 A + 1
9 id A + A +
10 5 9 ltaddrp2d A + 1 < A + 1
11 1 5 readdcld A + A + 1
12 11 recnd A + A + 1
13 12 mulid1d A + A + 1 1 = A + 1
14 10 13 breqtrrd A + 1 < A + 1 1
15 5 5 3 ltdivmuld A + 1 A + 1 < 1 1 < A + 1 1
16 14 15 mpbird A + 1 A + 1 < 1
17 4 8 16 eflegeo A + e 1 A + 1 1 1 1 A + 1
18 5 recnd A + 1
19 3 rpne0d A + A + 1 0
20 12 18 12 19 divsubdird A + A + 1 - 1 A + 1 = A + 1 A + 1 1 A + 1
21 1 recnd A + A
22 21 18 pncand A + A + 1 - 1 = A
23 22 oveq1d A + A + 1 - 1 A + 1 = A A + 1
24 12 19 dividd A + A + 1 A + 1 = 1
25 24 oveq1d A + A + 1 A + 1 1 A + 1 = 1 1 A + 1
26 20 23 25 3eqtr3rd A + 1 1 A + 1 = A A + 1
27 26 oveq2d A + 1 1 1 A + 1 = 1 A A + 1
28 rpne0 A + A 0
29 21 12 28 19 recdivd A + 1 A A + 1 = A + 1 A
30 27 29 eqtrd A + 1 1 1 A + 1 = A + 1 A
31 17 30 breqtrd A + e 1 A + 1 A + 1 A
32 4 rpefcld A + e 1 A + 1 +
33 3 9 rpdivcld A + A + 1 A +
34 32 33 logled A + e 1 A + 1 A + 1 A log e 1 A + 1 log A + 1 A
35 31 34 mpbid A + log e 1 A + 1 log A + 1 A
36 4 relogefd A + log e 1 A + 1 = 1 A + 1
37 3 9 relogdivd A + log A + 1 A = log A + 1 log A
38 35 36 37 3brtr3d A + 1 A + 1 log A + 1 log A