Metamath Proof Explorer


Theorem logdiv2

Description: Generalization of relogdiv to a complex left argument. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Assertion logdiv2 A A 0 B + log A B = log A log B

Proof

Step Hyp Ref Expression
1 logcl A A 0 log A
2 1 3adant3 A A 0 B + log A
3 relogcl B + log B
4 3 3ad2ant3 A A 0 B + log B
5 4 recnd A A 0 B + log B
6 efsub log A log B e log A log B = e log A e log B
7 2 5 6 syl2anc A A 0 B + e log A log B = e log A e log B
8 eflog A A 0 e log A = A
9 8 3adant3 A A 0 B + e log A = A
10 reeflog B + e log B = B
11 10 3ad2ant3 A A 0 B + e log B = B
12 9 11 oveq12d A A 0 B + e log A e log B = A B
13 7 12 eqtrd A A 0 B + e log A log B = A B
14 13 fveq2d A A 0 B + log e log A log B = log A B
15 2 5 negsubd A A 0 B + log A + log B = log A log B
16 logrncl A A 0 log A ran log
17 16 3adant3 A A 0 B + log A ran log
18 4 renegcld A A 0 B + log B
19 logrnaddcl log A ran log log B log A + log B ran log
20 17 18 19 syl2anc A A 0 B + log A + log B ran log
21 15 20 eqeltrrd A A 0 B + log A log B ran log
22 logef log A log B ran log log e log A log B = log A log B
23 21 22 syl A A 0 B + log e log A log B = log A log B
24 14 23 eqtr3d A A 0 B + log A B = log A log B