Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|
2 |
|
fzfid |
|
3 |
|
elfzuz |
|
4 |
3
|
adantl |
|
5 |
|
nnuz |
|
6 |
4 5
|
eleqtrrdi |
|
7 |
6
|
nnrpd |
|
8 |
7
|
relogcld |
|
9 |
8 6
|
nndivred |
|
10 |
2 9
|
fsumrecl |
|
11 |
|
remulcl |
|
12 |
1 10 11
|
sylancr |
|
13 |
|
elfznn |
|
14 |
13
|
adantl |
|
15 |
14
|
nnrecred |
|
16 |
2 15
|
fsumrecl |
|
17 |
16
|
resqcld |
|
18 |
|
nnrp |
|
19 |
18
|
relogcld |
|
20 |
|
peano2re |
|
21 |
19 20
|
syl |
|
22 |
21
|
resqcld |
|
23 |
10
|
recnd |
|
24 |
23
|
2timesd |
|
25 |
|
fzfid |
|
26 |
|
elfznn |
|
27 |
26
|
adantl |
|
28 |
27
|
nnrecred |
|
29 |
25 28
|
fsumrecl |
|
30 |
29 6
|
nndivred |
|
31 |
2 30
|
fsumrecl |
|
32 |
|
fzfid |
|
33 |
|
elfznn |
|
34 |
33
|
adantl |
|
35 |
34
|
nnrecred |
|
36 |
32 35
|
fsumrecl |
|
37 |
36 6
|
nndivred |
|
38 |
2 37
|
fsumrecl |
|
39 |
6
|
nncnd |
|
40 |
|
ax-1cn |
|
41 |
|
npcan |
|
42 |
39 40 41
|
sylancl |
|
43 |
42
|
fveq2d |
|
44 |
43
|
oveq2d |
|
45 |
|
nnm1nn0 |
|
46 |
|
harmonicbnd3 |
|
47 |
6 45 46
|
3syl |
|
48 |
44 47
|
eqeltrrd |
|
49 |
|
0re |
|
50 |
|
emre |
|
51 |
49 50
|
elicc2i |
|
52 |
51
|
simp2bi |
|
53 |
48 52
|
syl |
|
54 |
36 8
|
subge0d |
|
55 |
53 54
|
mpbid |
|
56 |
8 36 7 55
|
lediv1dd |
|
57 |
27
|
nnrpd |
|
58 |
57
|
rpreccld |
|
59 |
58
|
rpge0d |
|
60 |
|
elfzelz |
|
61 |
60
|
adantl |
|
62 |
|
peano2zm |
|
63 |
61 62
|
syl |
|
64 |
6
|
nnred |
|
65 |
64
|
lem1d |
|
66 |
|
eluz2 |
|
67 |
63 61 65 66
|
syl3anbrc |
|
68 |
|
fzss2 |
|
69 |
67 68
|
syl |
|
70 |
25 28 59 69
|
fsumless |
|
71 |
6
|
nngt0d |
|
72 |
|
lediv1 |
|
73 |
36 29 64 71 72
|
syl112anc |
|
74 |
70 73
|
mpbid |
|
75 |
9 37 30 56 74
|
letrd |
|
76 |
2 9 30 75
|
fsumle |
|
77 |
2 9 37 56
|
fsumle |
|
78 |
10 10 31 38 76 77
|
le2addd |
|
79 |
|
oveq1 |
|
80 |
79
|
oveq2d |
|
81 |
80
|
sumeq1d |
|
82 |
81 81
|
jca |
|
83 |
|
oveq1 |
|
84 |
83
|
oveq2d |
|
85 |
84
|
sumeq1d |
|
86 |
85 85
|
jca |
|
87 |
|
oveq1 |
|
88 |
|
1m1e0 |
|
89 |
87 88
|
eqtrdi |
|
90 |
89
|
oveq2d |
|
91 |
|
fz10 |
|
92 |
90 91
|
eqtrdi |
|
93 |
92
|
sumeq1d |
|
94 |
|
sum0 |
|
95 |
93 94
|
eqtrdi |
|
96 |
95 95
|
jca |
|
97 |
|
oveq1 |
|
98 |
97
|
oveq2d |
|
99 |
98
|
sumeq1d |
|
100 |
99 99
|
jca |
|
101 |
|
peano2nn |
|
102 |
101 5
|
eleqtrdi |
|
103 |
|
fzfid |
|
104 |
|
elfznn |
|
105 |
104
|
adantl |
|
106 |
105
|
nnrecred |
|
107 |
103 106
|
fsumrecl |
|
108 |
107
|
recnd |
|
109 |
82 86 96 100 102 108 108
|
fsumparts |
|
110 |
|
nnz |
|
111 |
|
fzval3 |
|
112 |
110 111
|
syl |
|
113 |
112
|
eqcomd |
|
114 |
36
|
recnd |
|
115 |
6
|
nnrecred |
|
116 |
115
|
recnd |
|
117 |
|
pncan |
|
118 |
39 40 117
|
sylancl |
|
119 |
118
|
oveq2d |
|
120 |
119
|
sumeq1d |
|
121 |
28
|
recnd |
|
122 |
|
oveq2 |
|
123 |
4 121 122
|
fsumm1 |
|
124 |
120 123
|
eqtrd |
|
125 |
114 116 124
|
mvrladdd |
|
126 |
125
|
oveq2d |
|
127 |
6
|
nnne0d |
|
128 |
114 39 127
|
divrecd |
|
129 |
126 128
|
eqtr4d |
|
130 |
113 129
|
sumeq12rdv |
|
131 |
|
nncn |
|
132 |
|
pncan |
|
133 |
131 40 132
|
sylancl |
|
134 |
133
|
oveq2d |
|
135 |
134
|
sumeq1d |
|
136 |
135 135
|
oveq12d |
|
137 |
16
|
recnd |
|
138 |
137
|
sqvald |
|
139 |
136 138
|
eqtr4d |
|
140 |
|
0cn |
|
141 |
140
|
mul01i |
|
142 |
141
|
a1i |
|
143 |
139 142
|
oveq12d |
|
144 |
137
|
sqcld |
|
145 |
144
|
subid1d |
|
146 |
143 145
|
eqtrd |
|
147 |
125 120
|
oveq12d |
|
148 |
29
|
recnd |
|
149 |
148 39 127
|
divrec2d |
|
150 |
147 149
|
eqtr4d |
|
151 |
113 150
|
sumeq12rdv |
|
152 |
146 151
|
oveq12d |
|
153 |
109 130 152
|
3eqtr3rd |
|
154 |
31
|
recnd |
|
155 |
38
|
recnd |
|
156 |
144 154 155
|
subaddd |
|
157 |
153 156
|
mpbid |
|
158 |
78 157
|
breqtrd |
|
159 |
24 158
|
eqbrtrd |
|
160 |
|
flid |
|
161 |
110 160
|
syl |
|
162 |
161
|
oveq2d |
|
163 |
162
|
sumeq1d |
|
164 |
|
nnre |
|
165 |
|
nnge1 |
|
166 |
|
harmonicubnd |
|
167 |
164 165 166
|
syl2anc |
|
168 |
163 167
|
eqbrtrrd |
|
169 |
14
|
nnrpd |
|
170 |
169
|
rpreccld |
|
171 |
170
|
rpge0d |
|
172 |
2 15 171
|
fsumge0 |
|
173 |
49
|
a1i |
|
174 |
|
log1 |
|
175 |
|
1rp |
|
176 |
|
logleb |
|
177 |
175 18 176
|
sylancr |
|
178 |
165 177
|
mpbid |
|
179 |
174 178
|
eqbrtrrid |
|
180 |
19
|
lep1d |
|
181 |
173 19 21 179 180
|
letrd |
|
182 |
16 21 172 181
|
le2sqd |
|
183 |
168 182
|
mpbid |
|
184 |
12 17 22 159 183
|
letrd |
|
185 |
1
|
a1i |
|
186 |
|
2pos |
|
187 |
186
|
a1i |
|
188 |
|
lemuldiv2 |
|
189 |
10 22 185 187 188
|
syl112anc |
|
190 |
184 189
|
mpbid |
|