Metamath Proof Explorer


Theorem logdivle

Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Assertion logdivle A e A B e B A B log B B log A A

Proof

Step Hyp Ref Expression
1 logdivlt B e B A e A B < A log A A < log B B
2 1 ancoms A e A B e B B < A log A A < log B B
3 2 notbid A e A B e B ¬ B < A ¬ log A A < log B B
4 simpll A e A B e B A
5 simprl A e A B e B B
6 4 5 lenltd A e A B e B A B ¬ B < A
7 0red A e A B e B 0
8 ere e
9 8 a1i A e A B e B e
10 epos 0 < e
11 10 a1i A e A B e B 0 < e
12 simprr A e A B e B e B
13 7 9 5 11 12 ltletrd A e A B e B 0 < B
14 5 13 elrpd A e A B e B B +
15 relogcl B + log B
16 14 15 syl A e A B e B log B
17 16 14 rerpdivcld A e A B e B log B B
18 simplr A e A B e B e A
19 7 9 4 11 18 ltletrd A e A B e B 0 < A
20 4 19 elrpd A e A B e B A +
21 relogcl A + log A
22 20 21 syl A e A B e B log A
23 22 20 rerpdivcld A e A B e B log A A
24 17 23 lenltd A e A B e B log B B log A A ¬ log A A < log B B
25 3 6 24 3bitr4d A e A B e B A B log B B log A A