Step |
Hyp |
Ref |
Expression |
1 |
|
logdivlti |
|
2 |
1
|
ex |
|
3 |
2
|
3expa |
|
4 |
3
|
an32s |
|
5 |
4
|
adantrr |
|
6 |
|
fveq2 |
|
7 |
|
id |
|
8 |
6 7
|
oveq12d |
|
9 |
8
|
eqcomd |
|
10 |
9
|
a1i |
|
11 |
|
logdivlti |
|
12 |
11
|
ex |
|
13 |
12
|
3expa |
|
14 |
13
|
an32s |
|
15 |
14
|
adantrr |
|
16 |
15
|
ancoms |
|
17 |
10 16
|
orim12d |
|
18 |
17
|
con3d |
|
19 |
|
simpl |
|
20 |
|
epos |
|
21 |
|
0re |
|
22 |
|
ere |
|
23 |
|
ltletr |
|
24 |
21 22 23
|
mp3an12 |
|
25 |
20 24
|
mpani |
|
26 |
25
|
imp |
|
27 |
19 26
|
elrpd |
|
28 |
|
relogcl |
|
29 |
|
rerpdivcl |
|
30 |
28 29
|
mpancom |
|
31 |
27 30
|
syl |
|
32 |
|
simpl |
|
33 |
|
ltletr |
|
34 |
21 22 33
|
mp3an12 |
|
35 |
20 34
|
mpani |
|
36 |
35
|
imp |
|
37 |
32 36
|
elrpd |
|
38 |
|
relogcl |
|
39 |
|
rerpdivcl |
|
40 |
38 39
|
mpancom |
|
41 |
37 40
|
syl |
|
42 |
|
axlttri |
|
43 |
31 41 42
|
syl2anr |
|
44 |
|
axlttri |
|
45 |
44
|
ad2ant2r |
|
46 |
18 43 45
|
3imtr4d |
|
47 |
5 46
|
impbid |
|