Metamath Proof Explorer


Theorem logdivlt

Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion logdivlt A e A B e B A < B log B B < log A A

Proof

Step Hyp Ref Expression
1 logdivlti A B e A A < B log B B < log A A
2 1 ex A B e A A < B log B B < log A A
3 2 3expa A B e A A < B log B B < log A A
4 3 an32s A e A B A < B log B B < log A A
5 4 adantrr A e A B e B A < B log B B < log A A
6 fveq2 A = B log A = log B
7 id A = B A = B
8 6 7 oveq12d A = B log A A = log B B
9 8 eqcomd A = B log B B = log A A
10 9 a1i A e A B e B A = B log B B = log A A
11 logdivlti B A e B B < A log A A < log B B
12 11 ex B A e B B < A log A A < log B B
13 12 3expa B A e B B < A log A A < log B B
14 13 an32s B e B A B < A log A A < log B B
15 14 adantrr B e B A e A B < A log A A < log B B
16 15 ancoms A e A B e B B < A log A A < log B B
17 10 16 orim12d A e A B e B A = B B < A log B B = log A A log A A < log B B
18 17 con3d A e A B e B ¬ log B B = log A A log A A < log B B ¬ A = B B < A
19 simpl B e B B
20 epos 0 < e
21 0re 0
22 ere e
23 ltletr 0 e B 0 < e e B 0 < B
24 21 22 23 mp3an12 B 0 < e e B 0 < B
25 20 24 mpani B e B 0 < B
26 25 imp B e B 0 < B
27 19 26 elrpd B e B B +
28 relogcl B + log B
29 rerpdivcl log B B + log B B
30 28 29 mpancom B + log B B
31 27 30 syl B e B log B B
32 simpl A e A A
33 ltletr 0 e A 0 < e e A 0 < A
34 21 22 33 mp3an12 A 0 < e e A 0 < A
35 20 34 mpani A e A 0 < A
36 35 imp A e A 0 < A
37 32 36 elrpd A e A A +
38 relogcl A + log A
39 rerpdivcl log A A + log A A
40 38 39 mpancom A + log A A
41 37 40 syl A e A log A A
42 axlttri log B B log A A log B B < log A A ¬ log B B = log A A log A A < log B B
43 31 41 42 syl2anr A e A B e B log B B < log A A ¬ log B B = log A A log A A < log B B
44 axlttri A B A < B ¬ A = B B < A
45 44 ad2ant2r A e A B e B A < B ¬ A = B B < A
46 18 43 45 3imtr4d A e A B e B log B B < log A A A < B
47 5 46 impbid A e A B e B A < B log B B < log A A