Metamath Proof Explorer


Theorem logdivlti

Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion logdivlti A B e A A < B log B B < log A A

Proof

Step Hyp Ref Expression
1 simpl2 A B e A A < B B
2 simpl3 A B e A A < B e A
3 simpr A B e A A < B A < B
4 ere e
5 simpl1 A B e A A < B A
6 lelttr e A B e A A < B e < B
7 4 5 1 6 mp3an2i A B e A A < B e A A < B e < B
8 2 3 7 mp2and A B e A A < B e < B
9 epos 0 < e
10 0re 0
11 lttr 0 e B 0 < e e < B 0 < B
12 10 4 1 11 mp3an12i A B e A A < B 0 < e e < B 0 < B
13 9 12 mpani A B e A A < B e < B 0 < B
14 8 13 mpd A B e A A < B 0 < B
15 1 14 elrpd A B e A A < B B +
16 ltletr 0 e A 0 < e e A 0 < A
17 10 4 5 16 mp3an12i A B e A A < B 0 < e e A 0 < A
18 9 17 mpani A B e A A < B e A 0 < A
19 2 18 mpd A B e A A < B 0 < A
20 5 19 elrpd A B e A A < B A +
21 15 20 rpdivcld A B e A A < B B A +
22 relogcl B A + log B A
23 21 22 syl A B e A A < B log B A
24 1 20 rerpdivcld A B e A A < B B A
25 1re 1
26 resubcl B A 1 B A 1
27 24 25 26 sylancl A B e A A < B B A 1
28 relogcl A + log A
29 20 28 syl A B e A A < B log A
30 27 29 remulcld A B e A A < B B A 1 log A
31 reeflog B A + e log B A = B A
32 21 31 syl A B e A A < B e log B A = B A
33 ax-1cn 1
34 24 recnd A B e A A < B B A
35 pncan3 1 B A 1 + B A - 1 = B A
36 33 34 35 sylancr A B e A A < B 1 + B A - 1 = B A
37 32 36 eqtr4d A B e A A < B e log B A = 1 + B A - 1
38 5 recnd A B e A A < B A
39 38 mulid2d A B e A A < B 1 A = A
40 39 3 eqbrtrd A B e A A < B 1 A < B
41 1red A B e A A < B 1
42 ltmuldiv 1 B A 0 < A 1 A < B 1 < B A
43 41 1 5 19 42 syl112anc A B e A A < B 1 A < B 1 < B A
44 40 43 mpbid A B e A A < B 1 < B A
45 difrp 1 B A 1 < B A B A 1 +
46 25 24 45 sylancr A B e A A < B 1 < B A B A 1 +
47 44 46 mpbid A B e A A < B B A 1 +
48 efgt1p B A 1 + 1 + B A - 1 < e B A 1
49 47 48 syl A B e A A < B 1 + B A - 1 < e B A 1
50 37 49 eqbrtrd A B e A A < B e log B A < e B A 1
51 eflt log B A B A 1 log B A < B A 1 e log B A < e B A 1
52 23 27 51 syl2anc A B e A A < B log B A < B A 1 e log B A < e B A 1
53 50 52 mpbird A B e A A < B log B A < B A 1
54 27 recnd A B e A A < B B A 1
55 54 mulid1d A B e A A < B B A 1 1 = B A 1
56 df-e e = e 1
57 reeflog A + e log A = A
58 20 57 syl A B e A A < B e log A = A
59 2 58 breqtrrd A B e A A < B e e log A
60 56 59 eqbrtrrid A B e A A < B e 1 e log A
61 efle 1 log A 1 log A e 1 e log A
62 25 29 61 sylancr A B e A A < B 1 log A e 1 e log A
63 60 62 mpbird A B e A A < B 1 log A
64 posdif 1 B A 1 < B A 0 < B A 1
65 25 24 64 sylancr A B e A A < B 1 < B A 0 < B A 1
66 44 65 mpbid A B e A A < B 0 < B A 1
67 lemul2 1 log A B A 1 0 < B A 1 1 log A B A 1 1 B A 1 log A
68 41 29 27 66 67 syl112anc A B e A A < B 1 log A B A 1 1 B A 1 log A
69 63 68 mpbid A B e A A < B B A 1 1 B A 1 log A
70 55 69 eqbrtrrd A B e A A < B B A 1 B A 1 log A
71 23 27 30 53 70 ltletrd A B e A A < B log B A < B A 1 log A
72 relogdiv B + A + log B A = log B log A
73 15 20 72 syl2anc A B e A A < B log B A = log B log A
74 1cnd A B e A A < B 1
75 29 recnd A B e A A < B log A
76 34 74 75 subdird A B e A A < B B A 1 log A = B A log A 1 log A
77 1 recnd A B e A A < B B
78 20 rpne0d A B e A A < B A 0
79 77 38 75 78 div32d A B e A A < B B A log A = B log A A
80 75 mulid2d A B e A A < B 1 log A = log A
81 79 80 oveq12d A B e A A < B B A log A 1 log A = B log A A log A
82 76 81 eqtrd A B e A A < B B A 1 log A = B log A A log A
83 71 73 82 3brtr3d A B e A A < B log B log A < B log A A log A
84 relogcl B + log B
85 15 84 syl A B e A A < B log B
86 29 20 rerpdivcld A B e A A < B log A A
87 1 86 remulcld A B e A A < B B log A A
88 85 87 29 ltsub1d A B e A A < B log B < B log A A log B log A < B log A A log A
89 83 88 mpbird A B e A A < B log B < B log A A
90 85 86 15 ltdivmuld A B e A A < B log B B < log A A log B < B log A A
91 89 90 mpbird A B e A A < B log B B < log A A