| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logdivsqrle.a |
|
| 2 |
|
logdivsqrle.b |
|
| 3 |
|
logdivsqrle.1 |
|
| 4 |
|
logdivsqrle.2 |
|
| 5 |
|
ioorp |
|
| 6 |
5
|
eqcomi |
|
| 7 |
|
simpr |
|
| 8 |
7
|
relogcld |
|
| 9 |
7
|
rpsqrtcld |
|
| 10 |
9
|
rpred |
|
| 11 |
|
rpsqrtcl |
|
| 12 |
|
rpne0 |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
adantl |
|
| 15 |
8 10 14
|
redivcld |
|
| 16 |
15
|
fmpttd |
|
| 17 |
|
rpcn |
|
| 18 |
17
|
adantl |
|
| 19 |
|
rpne0 |
|
| 20 |
19
|
adantl |
|
| 21 |
18 20
|
logcld |
|
| 22 |
18
|
sqrtcld |
|
| 23 |
21 22 14
|
divrecd |
|
| 24 |
|
2cnd |
|
| 25 |
24
|
adantr |
|
| 26 |
|
2ne0 |
|
| 27 |
26
|
a1i |
|
| 28 |
25 27
|
reccld |
|
| 29 |
18 20 28
|
cxpnegd |
|
| 30 |
|
cxpsqrt |
|
| 31 |
18 30
|
syl |
|
| 32 |
31
|
oveq2d |
|
| 33 |
29 32
|
eqtrd |
|
| 34 |
33
|
oveq2d |
|
| 35 |
23 34
|
eqtr4d |
|
| 36 |
35
|
mpteq2dva |
|
| 37 |
36
|
oveq2d |
|
| 38 |
|
reelprrecn |
|
| 39 |
38
|
a1i |
|
| 40 |
7
|
rpreccld |
|
| 41 |
|
logf1o |
|
| 42 |
|
f1of |
|
| 43 |
41 42
|
ax-mp |
|
| 44 |
43
|
a1i |
|
| 45 |
17
|
ssriv |
|
| 46 |
|
0nrp |
|
| 47 |
|
ssdifsn |
|
| 48 |
45 46 47
|
mpbir2an |
|
| 49 |
48
|
a1i |
|
| 50 |
44 49
|
feqresmpt |
|
| 51 |
50
|
oveq2d |
|
| 52 |
|
dvrelog |
|
| 53 |
51 52
|
eqtr3di |
|
| 54 |
|
1cnd |
|
| 55 |
54
|
halfcld |
|
| 56 |
55
|
negcld |
|
| 57 |
56
|
adantr |
|
| 58 |
18 57
|
cxpcld |
|
| 59 |
54
|
adantr |
|
| 60 |
57 59
|
subcld |
|
| 61 |
18 60
|
cxpcld |
|
| 62 |
57 61
|
mulcld |
|
| 63 |
|
dvcxp1 |
|
| 64 |
56 63
|
syl |
|
| 65 |
39 21 40 53 58 62 64
|
dvmptmul |
|
| 66 |
37 65
|
eqtrd |
|
| 67 |
|
ax-resscn |
|
| 68 |
67
|
a1i |
|
| 69 |
|
eqid |
|
| 70 |
69
|
addcn |
|
| 71 |
70
|
a1i |
|
| 72 |
45
|
a1i |
|
| 73 |
|
ssid |
|
| 74 |
73
|
a1i |
|
| 75 |
|
cncfmptc |
|
| 76 |
54 72 74 75
|
syl3anc |
|
| 77 |
|
difss |
|
| 78 |
|
cncfmptid |
|
| 79 |
49 77 78
|
sylancl |
|
| 80 |
76 79
|
divcncf |
|
| 81 |
|
ax-1 |
|
| 82 |
17 81
|
jca |
|
| 83 |
|
eqid |
|
| 84 |
83
|
ellogdm |
|
| 85 |
82 84
|
sylibr |
|
| 86 |
85
|
ssriv |
|
| 87 |
86
|
a1i |
|
| 88 |
56 87
|
cxpcncf1 |
|
| 89 |
80 88
|
mulcncf |
|
| 90 |
|
cncfmptc |
|
| 91 |
56 72 74 90
|
syl3anc |
|
| 92 |
56 54
|
subcld |
|
| 93 |
92 87
|
cxpcncf1 |
|
| 94 |
91 93
|
mulcncf |
|
| 95 |
|
cncfss |
|
| 96 |
67 73 95
|
mp2an |
|
| 97 |
|
relogcn |
|
| 98 |
50 97
|
eqeltrrdi |
|
| 99 |
96 98
|
sselid |
|
| 100 |
94 99
|
mulcncf |
|
| 101 |
69 71 89 100
|
cncfmpt2f |
|
| 102 |
|
rpre |
|
| 103 |
102 19
|
rereccld |
|
| 104 |
|
rpge0 |
|
| 105 |
|
halfre |
|
| 106 |
105
|
renegcli |
|
| 107 |
106
|
a1i |
|
| 108 |
102 104 107
|
recxpcld |
|
| 109 |
103 108
|
remulcld |
|
| 110 |
|
1re |
|
| 111 |
106 110
|
resubcli |
|
| 112 |
111
|
a1i |
|
| 113 |
102 104 112
|
recxpcld |
|
| 114 |
107 113
|
remulcld |
|
| 115 |
|
relogcl |
|
| 116 |
114 115
|
remulcld |
|
| 117 |
109 116
|
readdcld |
|
| 118 |
117
|
adantl |
|
| 119 |
118
|
fmpttd |
|
| 120 |
|
cncfcdm |
|
| 121 |
120
|
biimpar |
|
| 122 |
68 101 119 121
|
syl21anc |
|
| 123 |
66 122
|
eqeltrd |
|
| 124 |
66
|
fveq1d |
|
| 125 |
124
|
adantr |
|
| 126 |
59
|
negcld |
|
| 127 |
|
cxpadd |
|
| 128 |
18 20 57 126 127
|
syl211anc |
|
| 129 |
61
|
mullidd |
|
| 130 |
57 59
|
negsubd |
|
| 131 |
130
|
oveq2d |
|
| 132 |
129 131
|
eqtr4d |
|
| 133 |
45 40
|
sselid |
|
| 134 |
133 58
|
mulcomd |
|
| 135 |
|
cxpneg |
|
| 136 |
18 20 59 135
|
syl3anc |
|
| 137 |
18
|
cxp1d |
|
| 138 |
137
|
oveq2d |
|
| 139 |
136 138
|
eqtr2d |
|
| 140 |
139
|
oveq2d |
|
| 141 |
134 140
|
eqtrd |
|
| 142 |
128 132 141
|
3eqtr4rd |
|
| 143 |
57 61 21
|
mul32d |
|
| 144 |
142 143
|
oveq12d |
|
| 145 |
57 21
|
mulcld |
|
| 146 |
59 145 61
|
adddird |
|
| 147 |
144 146
|
eqtr4d |
|
| 148 |
147
|
mpteq2dva |
|
| 149 |
148
|
fveq1d |
|
| 150 |
149
|
adantr |
|
| 151 |
|
eqidd |
|
| 152 |
|
simpr |
|
| 153 |
152
|
fveq2d |
|
| 154 |
153
|
oveq2d |
|
| 155 |
154
|
oveq2d |
|
| 156 |
152
|
oveq1d |
|
| 157 |
155 156
|
oveq12d |
|
| 158 |
|
ioossicc |
|
| 159 |
158
|
a1i |
|
| 160 |
6 1 2
|
fct2relem |
|
| 161 |
159 160
|
sstrd |
|
| 162 |
161
|
sselda |
|
| 163 |
|
ovexd |
|
| 164 |
151 157 162 163
|
fvmptd |
|
| 165 |
110
|
a1i |
|
| 166 |
106
|
a1i |
|
| 167 |
162
|
relogcld |
|
| 168 |
166 167
|
remulcld |
|
| 169 |
165 168
|
readdcld |
|
| 170 |
|
0red |
|
| 171 |
|
rpcxpcl |
|
| 172 |
162 111 171
|
sylancl |
|
| 173 |
172
|
rpred |
|
| 174 |
172
|
rpge0d |
|
| 175 |
|
2cn |
|
| 176 |
175
|
mullidi |
|
| 177 |
|
2re |
|
| 178 |
177
|
a1i |
|
| 179 |
178
|
reefcld |
|
| 180 |
1
|
rpred |
|
| 181 |
180
|
adantr |
|
| 182 |
162
|
rpred |
|
| 183 |
3
|
adantr |
|
| 184 |
|
eliooord |
|
| 185 |
184
|
simpld |
|
| 186 |
185
|
adantl |
|
| 187 |
181 182 186
|
ltled |
|
| 188 |
179 181 182 183 187
|
letrd |
|
| 189 |
|
reeflog |
|
| 190 |
162 189
|
syl |
|
| 191 |
188 190
|
breqtrrd |
|
| 192 |
|
efle |
|
| 193 |
177 167 192
|
sylancr |
|
| 194 |
191 193
|
mpbird |
|
| 195 |
176 194
|
eqbrtrid |
|
| 196 |
|
2rp |
|
| 197 |
196
|
a1i |
|
| 198 |
165 167 197
|
lemuldivd |
|
| 199 |
195 198
|
mpbid |
|
| 200 |
67 167
|
sselid |
|
| 201 |
24
|
adantr |
|
| 202 |
26
|
a1i |
|
| 203 |
200 201 202
|
divrec2d |
|
| 204 |
199 203
|
breqtrd |
|
| 205 |
55
|
adantr |
|
| 206 |
205 200
|
mulneg1d |
|
| 207 |
206
|
oveq2d |
|
| 208 |
67 170
|
sselid |
|
| 209 |
205 200
|
mulcld |
|
| 210 |
208 209
|
subnegd |
|
| 211 |
209
|
addlidd |
|
| 212 |
207 210 211
|
3eqtrd |
|
| 213 |
204 212
|
breqtrrd |
|
| 214 |
|
leaddsub |
|
| 215 |
165 168 170 214
|
syl3anc |
|
| 216 |
213 215
|
mpbird |
|
| 217 |
169 170 173 174 216
|
lemul1ad |
|
| 218 |
45 172
|
sselid |
|
| 219 |
218
|
mul02d |
|
| 220 |
217 219
|
breqtrd |
|
| 221 |
164 220
|
eqbrtrd |
|
| 222 |
150 221
|
eqbrtrd |
|
| 223 |
125 222
|
eqbrtrd |
|
| 224 |
6 1 2 16 123 4 223
|
fdvnegge |
|
| 225 |
|
eqidd |
|
| 226 |
|
simpr |
|
| 227 |
226
|
fveq2d |
|
| 228 |
226
|
fveq2d |
|
| 229 |
227 228
|
oveq12d |
|
| 230 |
|
ovex |
|
| 231 |
230
|
a1i |
|
| 232 |
225 229 2 231
|
fvmptd |
|
| 233 |
|
simpr |
|
| 234 |
233
|
fveq2d |
|
| 235 |
233
|
fveq2d |
|
| 236 |
234 235
|
oveq12d |
|
| 237 |
|
ovex |
|
| 238 |
237
|
a1i |
|
| 239 |
225 236 1 238
|
fvmptd |
|
| 240 |
224 232 239
|
3brtr3d |
|