Metamath Proof Explorer


Theorem logdmn0

Description: A number in the continuous domain of log is nonzero. (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion logdmn0 A D A 0

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 0nrp ¬ 0 +
3 0re 0
4 1 ellogdm 0 D 0 0 0 +
5 4 simprbi 0 D 0 0 +
6 3 5 mpi 0 D 0 +
7 2 6 mto ¬ 0 D
8 eleq1 A = 0 A D 0 D
9 7 8 mtbiri A = 0 ¬ A D
10 9 necon2ai A D A 0