Metamath Proof Explorer


Theorem logdmnrp

Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion logdmnrp A D ¬ A +

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 eldifn A −∞ 0 ¬ A −∞ 0
3 2 1 eleq2s A D ¬ A −∞ 0
4 rpre A + A
5 1 ellogdm A D A A A +
6 5 simplbi A D A
7 negreb A A A
8 6 7 syl A D A A
9 4 8 syl5ib A D A + A
10 9 imp A D A + A
11 10 mnfltd A D A + −∞ < A
12 rpgt0 A + 0 < A
13 12 adantl A D A + 0 < A
14 10 lt0neg1d A D A + A < 0 0 < A
15 13 14 mpbird A D A + A < 0
16 0re 0
17 ltle A 0 A < 0 A 0
18 10 16 17 sylancl A D A + A < 0 A 0
19 15 18 mpd A D A + A 0
20 mnfxr −∞ *
21 elioc2 −∞ * 0 A −∞ 0 A −∞ < A A 0
22 20 16 21 mp2an A −∞ 0 A −∞ < A A 0
23 10 11 19 22 syl3anbrc A D A + A −∞ 0
24 3 23 mtand A D ¬ A +