Metamath Proof Explorer


Theorem logdmopn

Description: The "continuous domain" of log is an open set. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion logdmopn D TopOpen fld

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 eqid TopOpen fld = TopOpen fld
3 2 recld2 Clsd TopOpen fld
4 0re 0
5 iocmnfcld 0 −∞ 0 Clsd topGen ran .
6 4 5 ax-mp −∞ 0 Clsd topGen ran .
7 2 tgioo2 topGen ran . = TopOpen fld 𝑡
8 7 fveq2i Clsd topGen ran . = Clsd TopOpen fld 𝑡
9 6 8 eleqtri −∞ 0 Clsd TopOpen fld 𝑡
10 restcldr Clsd TopOpen fld −∞ 0 Clsd TopOpen fld 𝑡 −∞ 0 Clsd TopOpen fld
11 3 9 10 mp2an −∞ 0 Clsd TopOpen fld
12 unicntop = TopOpen fld
13 12 cldopn −∞ 0 Clsd TopOpen fld −∞ 0 TopOpen fld
14 11 13 ax-mp −∞ 0 TopOpen fld
15 1 14 eqeltri D TopOpen fld